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Abstract 

This study investigates how neural networks reveal 
developmental trajectories of child language, focusing on the 
Agent-First strategy in comprehension of an active transitive 
construction in Korean. We develop three models (LSTM; 
BERT; GPT-2) and measure their classification performance 
on the test stimuli used in Shin (2021) involving scrambling 
and omission of constructional components at varying degrees. 
Results show that, despite some compatibility of these models’ 
performance with the children’s response patterns, their 
performance does not fully approximate the children’s 
utilisation of this strategy, demonstrating by-model and by-
condition asymmetries. This study’s findings suggest that 
neural networks can utilise information about formal co-
occurrences to access the intended message to a certain degree, 
but the outcome of this process may be substantially different 
from how a child (as a developing processor) engages in 
comprehension. This implies some limits of neural networks 
on revealing the developmental trajectories of child language.  

Keywords: Agent-First strategy; Neural network; Active 
transitive; Child comprehension 

Introduction 
One active trend in research on child language development 
is to adopt computational modelling techniques to address 
developmental trajectories of children’s linguistic knowledge 
(e.g., Alishahi & Stevenson, 2008; Ambridge et al., 2020; 
Bannard et al., 2009; You et al., 2021). There is growing 
interest in the ways neural networks (NNs) address human 
language behaviour (e.g., Futrell & Levy, 2019; Hu et al., 
2020; Warstadt & Bowman, 2020). Artificial NNs, analogous 
to biological NNs in human brains (Haykin, 2009; Hopfield, 
1982; Jordan, 1997), are proposed as a computing system 
which comprises weighted and layered interconnections 
amongst processing units (loosely modelling neurons in the 
brain) responding to input in parallel and producing output 
through propagation (see Kriesel, 2007 for in-depth 
descriptions of neural networks). NNs are applied to various 
disciplines (Abiodun et al., 2018) due to its efficient 
performance on data analysis factors (Wang et al., 2017), but 
they require exceedingly large training samples and 
considerable computing resources for effective operation 
(e.g., Edwards, 2015). Moreover, the continuous 
development of NN algorithms has made their internal 
mechanisms deviate from how biological neurons operate in 
reality (e.g., Crick, 1989). Recent studies have shown that 
transformers, which are characterised as the attention 

mechanism (e.g., Vaswani et al., 2017), yield better 
performance on language tasks than previously proposed 
architectures (e.g., Hawkins et al., 2020). Nevertheless, we 
are not aware of any study that attempts to explain properties 
of child language through the lens of NNs, particularly any 
that reveals the extent to which NN models address the 
findings of behavioural experiments around children. 

The present study investigates this inquiry, focusing on the 
Agent-First strategy in child comprehension. Children often 
map the first noun (mostly the subject) of a sentence to an 
agent role during comprehension (e.g., Abbot-Smith et al., 
2017; Sinclair & Bronckart, 1972; Slobin & Bever, 1982). 
This strategy, whether it be a temporary bias in online 
processing (e.g., Abbot-Smith et al., 2017) or a heuristic 
persistent over the entire comprehension (e.g., Slobin & 
Bever, 1982), is driven from various sources. To illustrate, 
repeated exposure to the particular association between the 
first argument and agenthood provides a prototype for 
thematic role ordering (e.g., Bates & MacWhinney, 1989). 
The first item in a sequence also holds a privileged status in 
human cognition; language users employ the first element in 
a sentence as a starting point for language behaviour, which 
guides the rest of the sentence (MacWhinney, 1977). When 
comprehenders initiate linguistic representations and map 
new information onto the developing structure, the first-
mentioned item provides a pathway for the sentence-level 
integration of incoming information later, rendering that item 
advantageous and privileged in comprehension 
(Gernsbacher, 1990). Moreover, this strategy aligns with the 
typical composition of an event by placing an entity that 
engages most strongly with an action in the early phase of 
information flow (Bornkessel-Schlesewsky & Schlesewsky, 
2009; Cohn & Paczynski, 2013). Existing literature, mostly 
based on the major languages currently under investigation, 
reports children’s heavy reliance on this strategy for sentence 
comprehension (e.g., Abbot-Smith et al., 2017; Gertner et al., 
2006; Yuan et al., 2012). This favours the early emergence 
and universal application of this strategy as an intrinsic 
cognitive bias for child comprehension across languages. 

We pursue this inquiry through an active transitive 
construction in Korean, an agglutinative, SOV language with 
overt case-marking. The canonical word order for the active 
transitive follows agent-theme ordering as in (1a); this can be 
scrambled as in (1b), manifesting the reverse thematic role 
ordering (theme-agent). Korean allows the omission of 
sentential components if the omitted information can be 
inferred from the context (Sohn, 1999). We develop various 
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NN models—LSTM (Hochreiter & Schmidhuber, 1997), 
BERT (Devlin et al., 2018), and GPT-2 (Radford et al., 
2019)—to explore what these models can(not) demonstrate 
about child comprehension with respect to the Agent-First 
strategy. We train each model with caregiver input in the 
CHILDES database (MacWhinney, 2000), and evaluate its 
performance in classifying test items used in Shin (2021). 

 
(1a) Active transitive (canonical) 
kyengchal-i totwuk-ul cap-ass-ta.  
police-NOM   thief-ACC   catch-PST-SE1  
‘The police caught the thief.’  
 
(1b) Active transitive (scrambled) 
totwuk-ul kyengchal-i   cap-ass-ta. 
thief-ACC   police-NOM   catch-PST-SE 
‘The police caught the thief.’ 

Korean-speaking children’s utilisation of the Agent-
First strategy to comprehension of active transitive 
Shin (2021) finds that, for Korean-speaking children’s 
comprehension of a transitive event, the Agent-First strategy 
is activated properly only in conjunction with other types of 
grammatical cues. Shin measured typically developing three-
to-six-year-old children’s comprehension of the active 
transitive construction involving scrambling and omission of 
constructional components through a series of picture-
selection tasks. To this end, Shin devised an innovative 
methodology that systematically obscured parts of test 
stimuli with acoustic masking (e.g., coughing, chewing, 
yawning) accompanied by child-friendly contexts. 

Shin (2021) notes four major findings (Table 2). First, 
whereas the children had a good command of case-marking 
knowledge (NOM indicating the agent; ACC indicating the 
theme), they showed asymmetric performance by canonicity: 
they were better in the canonical (NNOMNACCV) than the 
scrambled (NACCNNOMV) condition. Second, they did not 
manifest the agent-first interpretation strongly in NCASEV, 
showing around 40 per cent for the 3-4yrs and around 60 per 
cent for the 5-6yrs. In this condition, children must determine 
the thematic role of the first and sole case-less argument, 
which can in principle be interpreted as either the agent or the 
theme. If the Agent-First strategy strongly guides children’s 
comprehension, this argument should be interpreted as the 
agent reliably, which was not the case. Third, compared to 
NCASEV, the presence of a second noun (NCASENCASEV) 
increased responses consistent with the Agent-First strategy, 
but its magnitude differed by age: only the 3-4yrs 
considerably enhanced the agent-first interpretation from 
NCASEV to NCASENCASEV. Fourth, the presence of markers 
(NNOMV) substantially increased the agent-first response rates 
for both age groups. 

Based on these findings, Shin (2021) when Korean-
speaking children interpret a transitive event, they do not 

 
1  Abbreviation: ACC = accusative case marker; CASE = case 

marker (unspecified); NOM = nominative case marker; PST = past 
tense marker; SE = sentence ender; V = verb. 

employ this strategy automatically and immediately based 
solely on an argument’s initial position in the sentence. 
Considering the particular experimental setting in which 
participants were exposed to pictures prior to stimuli so that 
they adjust their interpretation to transitive events with two 
animate participants (one as an agent and the other as a 
theme) before encountering the stimuli, the children’s 
comprehension behaviour would have been guided by two 
major forces. One involves properties of caregiver input 
regarding transitive events. In CHILDES, the number of first-
noun-as-agent pattern instances did not exceed that of first-
noun-as-theme pattern instances, but almost all of the 
transitive instances had either a second argument or a marker 
(with a strong agent–NOM association). The other force 
involves the developing nature of a child processor, 
prioritising a local cue over a distributional cue (Wittek & 
Tomasello, 2005). Children may attend to the local pairing 
that associates the NOM-marked argument onto agenthood 
before becoming sensitive to the broad-scope distributional 
cue involving a second argument in employing the assumed 
Agent-First strategy for complete interpretation of a 
transitive sentence. Because the activation of the Agent-First 
strategy is tied to other grammatical cues such as case-
marking (particularly NOM) and a second nominal, Korean-
speaking children (and even adults) employ this strategy with 
confidence only when they are provided with a linguistically 
informative environment. This argument challenges the long-
standing idea that children have the default mapping of the 
agent onto the first noun as an intrinsic comprehension bias, 
as claimed by previous studies targeting the major languages 
(e.g., Abbot-Smith et al., 2017; Gertner et al., 2006). 

 
Table 1. Summary of results: major conditions (α = .05) 

 
Condition Group Mean (%) SD Note 

NNOMNACCV 
3-4yr 84.44 0.36 Scoring: 

accuracy (1: 
correct; 0: 
incorrect) 

5-6yr 94.20 0.24 
Adult 100.00 0.00 

NACCNNOMV 
3-4yr 77.78 0.42 
5-6yr 71.01 0.46 
Adult 100.00 0.00 

NNOMV 
3-4yr 94.44 0.23 
5-6yr 97.10 0.17 
Adult 93.33 0.25 

NACCV 
3-4yr 92.22 0.27 
5-6yr 97.10 0.17 
Adult 100.00 0.00 

NCASENCASEV 
3-4yr 66.67 0.48 Scoring: high 

likelihood of 
agent-first 
interpretation (1: 
agent-first; 0: 
theme-first) 

5-6yr 77.27 0.42 
Adult 90.00 0.04 

NCASEV 
3-4yr 42.59 0.50 
5-6yr 60.42 0.49 
Adult 66.67 0.06 
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With these in mind, we ask whether/how NNs, as a proxy 
for children’s cognitive space wherein learning occurs, reveal 
their developmental trajectories as a function of the interplay 
between properties of input (child-directed speech) and 
domain-general learning capacities (statistical learning). We 
pursue this inquiry by developing three NN models with 
caregiver input and measuring their classification 
performance on the same stimuli used in Shin (2021), 
specifically focusing on the major conditions relating to the 
Agent-First strategy listed in Table 1. For model training, we 
employ the caregiver input data extracted from CHILDES 
pertaining to transitive events to reflect the experimental 
setting of Shin (2021), where children’s interpretation was 
contextualised through pictures before presenting aural 
stimuli. It is known that caregiver input—which notably 
differ from adult language usage in terms of clausal 
composition (e.g., non-human agents, partial utterances) and 
mode of delivery (e.g., simple, short, repetitive) (e.g., 
Cameron-Faulkner et al., 2003)—effectively supports 
children’s development of linguistic knowledge (e.g., 
Behrens, 2006; Choi, 1999). If NNs faithfully respect this 
characteristic, the models in this study should approximate 
child comprehension patterns measured by Shin (2021), with 
reasonable accuracy, like their successful performance in 
some adult language features (e.g., Futrell & Levy, 2019; 
Hawkins et al., 2020; Warstadt & Bowman, 2020). 

Methods 
With the Python packages and pre-trained models, we trained 
three models (Table 2) with all the caregiver input data in 
CHLDES, along with parameter setting advised by previous 
studies (e.g., Vázquez et al., 2020; Wu et al., 2019). The 
caregiver input data were pre-processed in two ways: typos 
and spacing errors were corrected, and any sentence whose 
length was less than five characters or those consisting only 
of onomatopoeia and mimetic words were excluded. These 
treatments resulted in 69,498 sentences (285,350 words). 
 

Table 2. Summary: Model specification 
 
 LSTM BERT GPT-2 
Package PyTorch Transformers 
Pre-
trained 
model 

KoCharElectra
-Base (Park, 
2020); 11,568 
syllable types 

KoBERT 
(Jeon, Lee et 
al., 2019); 54-
million-word 
tokens 

KoGPT2-base-v2 
(Jeon, Kim et al., 
2019); 51,200-
word tokens 

Tokeni-
sation 

Syllable-based Syllable-based 
WordPiece 

Syllable-based 
Byte Pair Encoding 

Model-
specific 

Hidden layers: 
256, Epoch: 10, 
Learning rate: 
.00002 

Batch: 32, Sequence length: 256, 
Epsilon: .00000001, Seed: 42, 
Epoch: 30, Learning rate: .0001 

 
We note that we used the respective pre-trained models in 

developing each NN model. While NNs typically require 
large training data for their optimal operation, there is no pre-

trained model exclusively constructed with caregiver input, 
nor a sufficient amount of Korean caregiver input data to 
create a pre-trained model. In addition, children are not 
surrounded only with caregiver input in real life; there are 
many types of exposure to language use that children 
experience. Adopting a pre-trained model in conjunction with 
the caregiver input data can be one way to approximate this 
nature, possibly ensuring better ecological validity for the 
simulation. Notably, no research has ever touched upon this 
issue, thus worthy of further attention. 
 

Table 3. Constructional patterns for transitive events in 
the caregiver input (adapted from Shin, 2020) 

 

Construction Label Frequency 
# % 

Canonical  
active  
transitive 

No omission 
Agt-1st 

1,757 25.46 
no ACC 268 3.88 
no NOM 19 0.28 

Scrambled  
active  
transitive 

No omission 
Thm-1st 

51 0.74 
no NOM 0 0.00 
no ACC 6 0.09 

Active  
Transitive 
with 
omission 

agent–theme, no CM Agt-1st 3 0.04 
theme–agent, no CM Thm-1st 0 0.00 
undetermined, no CM Agt-1st 0 0.00 
agent–NOM only 935 13.55 
theme–ACC only Thm-1st 1,938 28.08 
agent only, no CM Agt-1st 53 0.77 
theme only, no CM Thm-1st 1,155 16.73 
undetermined, no CM1) Agt-1st 40 0.58 

Canonical  
suffixal  
passive 

No omission 
Thm-1st 

2 0.03 
no DAT 0 0.00 
no NOM 0 0.00 

Scrambled  
suffixal  
passive 

No omission 
Agt-1st 

1 0.01 
no NOM 0 0.00 
no DAT 0 0.00 

Suffixal  
passive 
with 
omission 

theme–agent, no CM Thm-1st 0 0.00 
agent–theme, no CM Agt-1st 0 0.00 
undetermined, no CM Thm-1st 0 0.00 
theme–NOM only 407 5.90 
agent–DAT only Agt-1st 13 0.19 
theme only, no CM Thm-1st 20 0.29 
agent only, no CM Agt-1st 0 0.00 
undetermined, no CM2) Thm-1st 0 0.00 

Ditransitive recipient–DAT only1) Agt-1st 234 3.39 
Sum 6,902 100.00 

Note. CM = case-marking. Ciwu and Mia are human names. 
The labels of 1) and 2) were determined by the typical 
thematic role ordering in each construction type. We included 
a ditransitive construction with only a recipient–dative 
pairing. Although it does not relate to a transitive event per 
se and does not count as a relevant pattern, we considered this 
constructional pattern here because the dative marker is often 
used to indicate a recipient in the active and thus a potential 
competitor of the agent–dative pairing in the passive. 
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For the binary classification of test items (Agent-First; 
Theme-First) in consideration of the experimental setting of 
Shin (2021), these models were further trained with instances 
of all the constructional patterns expressing a transitive 
event—active transitive and suffixal passive, with 
scrambling and varying degrees of omission manifested—
with labels indicating whether the thematic-role ordering of 
these instances followed agent-first or theme-first (Table 3). 
The instances were extracted from the pre-processed 
caregiver input data through an automatic search process (cf. 
Shin, 2020); every sentence for each extraction was checked 
manually to ensure its accuracy. Although the focus 
concerning the Agent-First strategy in this study was the 
active transitive, we included the suffixal passive, another 
major clause-level device expressing a transitive event and 
the representative type of passive that children are likely to 
encounter in caregiver input (Shin, 2020). Furthermore, 
considering the zero occurrence of some patterns in the input, 
we adapted the Laplace smoothing technique (Agresti & 
Coull, 1998) by adding one fake instance (following the 
pattern-wise characteristics) to all the patterns. Nonetheless, 
most of the input comprised the active transitive, occupying 
more than 90 per cent of the entire input. 

For test items, we employed the same stimuli used in Shin 
(2021). Each condition consisted of six instances, with 
animals as agents and themes and actional verbs at the end 
(Table 4). Each trained model classified every test stimulus, 
evaluating if the stimulus fell into Agent-First or Theme-
First. We note that, while the stimuli of NCASENCASEV and 
NCASEV in Shin (2021) involved acoustic masking, the same 
stimuli types in the simulation did not have such auditory 
effects. This was unavoidable considering this study’s 
simulation setting where the models worked exclusively with 
the text data. We acknowledge that this difference might 
serve as one confounding factor for interpreting the results. 

 
Table 4. Composition of test stimuli 

 

Condition Example Expected 
classification 

NNOMNACCV dog-NOM cat-ACC poke Agent-first 
†NACCNNOMV cat-ACC dog-NOM poke Theme-first 
NNOMV dog-NOM poke Agent-first 
NACCV cat-ACC poke Theme-first 
NCASENCASEV dog cat poke Agent-first 
NCASEV dog poke Agent-first 

 
There is no syllable-based Korean pre-trained model 

exclusively for LSTM, so we adapted a pre-trained model for 
ELECTRA to extract relevant vocabulary information to 
train our LSTM model. We separated sentences from labels 
in the caregiver input data and tokenised the sentences by 
syllable, imitating the structure of the pre-trained model. All 
the syllables obtained from the pre-trained model and the 
caregiver input data were submitted to the model’s input 
layer, and the number of sentence labels were utilised as its 
output layer. Once the training was completed, the model 
processed the test stimuli, accumulating by-syllable 

information sequentially (by generating respective hidden 
layers), and it compared the outcomes (as a value of one for 
Agent-First or zero for Theme-First) to the actual labels of 
these stimuli. We repeated the same learning process 30 times 
and averaged the by-condition outcomes to assess the 
models’ classification performance, controlling for potential 
unexpected variations from any training phase. 

For the BERT model, every input sentence began and 
ended with [CLS] (marking the start of a sentence) and [SEP] 
(marking the end of a sentence) to indicate sentence 
boundaries. A ‘Label’ column was added to indicate whether 
the sentence was Agent-first or Theme-first. We tokenised 
the sentences by syllable (mirroring the pre-trained model) 
and converted them into numeric values which served as 
designated indices of the tokens in the pre-trained model. All 
the information obtained by this process was transformed into 
a tensor (i.e., a data format reducing the size to make 
processing faster). The initial values of epsilon, learning rate, 
and seed were automatically updated with the outcomes of 
each epoch. The training occurred 960 times (32 batches * 30 
epochs) from the initial model with the zero value of 
gradients to an optimal model with updated values through 
feedforward and backpropagation (cf. Xu et al., 2020). The 
trained model classified the test stimuli; like the LSTM 
model, we averaged the by-condition classification outcomes 
from 30 times of learning.  

The GPT-2 model’s training process was almost the same 
as above, except that the GPT-2 model used no symbol to 
mark the start/end of each input sentence. While BERT 
(WordPiece) utilises a word as a basis for tokenisation, GPT-
2 (Byte Pair Encoding) utilises a character (in the case of 
English) for this purpose. Notably, however, both KoBERT 
and KoGPT-2 employed a syllable as a basic unit of 
tokenisation (likely in consideration of the properties of 
Korean), so there was no essential difference between the two 
methods regarding tokenisation. 

Results and Discussions 

Case-marked conditions 
Figure 1 illustrates the classification performance of the three 
models, together with the children’s and adults’ performance 
measured in Shin (2021), on the four case-marked conditions. 
For the two-argument conditions, each model demonstrated 
asymmetric rates of accuracy. The LSTM model was 
constantly at-ceiling for both conditions (M = 90.28, SD = 
0.30 for NNOMNACCV; M = 91.67, SD = 0.28 for NACCNNOMV), 
approximating the adults’ accuracy rates. In contrast, the 
other two models’ performance was affected by canonicity: 
they showed a drop in accuracy for the scrambled condition 
relative to the canonical counterpart (BERT: M = 100.00, SD 
= 0.00 for NNOMNACCV; M = 51.61, SD = 0.50 for 
NACCNNOMV; GPT-2: M = 100.00, SD = 0.00 for 
NNOMNACCV; M = 16.67, SD = 0.37 for NACCNNOMV). This 
trend was somewhat similar to the children’s performance, 
but the gap between the two conditions was much larger for 
the models than for the children. For the one-argument 
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conditions, all the models achieved above-chance 
performance (LSTM: M = 72.22, SD = 0.45 for NNOMV; M = 
100.00, SD = 0.00 for NACCV; BERT: M = 85.00, SD = 0.36 
for NNOMV; M = 97.22, SD = 0.16 for NACCV; GPT-2: M = 
83.33, SD = 0.37 for NNOMV; M = 83.33, SD = 0.37 for 
NACCV), which resembled the children’s accuracy rates. 
 

 
Figure 1. Child comprehension and model performance. 

X-axis: group (for experiment) or model (for simulation). Y-
axis: accuracy. Error bars indicate 95% CI. 

 
These results suggest two major aspects in the models’ 

classification performance on the case-marked conditions. 
First, it seems that BERT and GPT-2 followed characteristics 
of the caregiver input selectively. Recall that (i) the number 
of first-noun-as-agent patterns (3,049 instances) did not 
exceed that of first-noun-as-theme patterns (3,579 instances) 
and (ii) the number of nominative-first patterns (overtly 
marked with the nominative case marker; 3,369 instances) 
outnumbered that of accusative-first patterns (overtly marked 
with the accusative case marker; 1,989 instances) despite the 
generally higher omission rate of the accusative case marker 
than that of the nominative case marker in caregiver input 
(Shin, 2020). Given these properties, the three models may 
have attended primarily to the form of a specific case marker 
(overtly attested in a test stimulus) rather than to the 
meaning/function (i.e., thematic roles) of the initial noun. 
This may have led to both success in one-argument 
conditions, where consideration of thematic role ordering 
was not required, but partial success in the two-argument 
conditions, where thematic role ordering between the two 
arguments should be considered. This model performance 
may have been further enhanced by the respective pre-trained 
models, created by general/adult language use involving the 
dominance of canonical word order and the frequent 
omission of the accusative case marker (Sohn, 1999). 

Moreover, the LSTM model’s outperformance over the 
other two transformer-architecture models in NACCNNOMV—
against our prediction—indicates the algorithm-exclusive 
memory cell’s contribution to information processing. In 
other words, the existence of a memory cell may have 
assisted the classification accuracy as effectively as the 
attention mechanism in the transformer-architecture models 
in the given simulation environment. Considering that 
transformer architecture excels in utilising information from 
long input sequences, it is reasonable to think that BERT and 
GPT-2 may not have fully exerted their algorithmic strength 

when handling child language. The LSTM model’s good 
classification performance further aligns with previous 
reports on this model’s success in learning and generalising 
clause-level linguistic knowledge (Futrell & Levy, 2019; 
Wilcox et al., 2018). In particular, when the characteristics of 
a test stimulus does not match those of typically appearing 
sentences in use (like scrambled word order), the attention 
mechanism may not have discriminated that stimulus 
effectively due to the larger volume of information—both 
sequential and positional information—that it retains 
compared to the recurrent architecture, which has only 
sequential information. This implies that a sophisticated, 
cutting-edge model may not always bring the best outcome. 

Case-less conditions 
Figure 2 illustrates the classification performance of the three 
models, together with the children’s and adults’ performance 
measured in Shin (2021), on the two case-less conditions. The 
performance indicates the high likelihood of agent-first 
interpretation (1: agent-first; 0: theme-first) because these 
conditions can in principle be interpreted in more than one 
way. For NCASENCASEV, the LSTM model was above-chance 
(M = 63.89, SD = 0.48), and the BERT and GPT-2 models 
were below-chance (BERT: M = 34.44, SD = 0.48; GPT-2: 
M = 33.33, SD = 0.47). For NCASEV, all the models were 
below-chance (LSTM: M = 25.00, SD = 0.43; BERT: M = 
18.89, SD = 0.39; GPT-2: M = 0.00, SD = 0.00). 

 

 
Figure 2. Child comprehension and model performance. 

X-axis: group (for experiment) or model (for simulation). Y-
axis: proportion of agent-first interpretation. Error bars 

indicate 95% CI. 
 
These results indicate that the models failed to capture the 

trend manifested by the children. The BERT and GPT-2 
models malfunctioned in these conditions, performing with 
high deviation from the children’s interpretation for the same 
conditions. The performance of the LSTM model was close 
to the children’s interpretation in NCASENCASEV, but differed 
considerably from it in NCASEV. One possible cause of this 
global anomaly originates from the interaction between the 
nature of the two conditions and the models’ information-
processing mechanism, which looks exclusively to formal 
sequences. The under-informativeness in determining the 
thematic role of the first noun involving the two conditions 
would have affected both the children’s comprehension and 
these models’ performance. However, the three models may 
have been more influenced than the children by the lack of 
reference point for the classification decision (i.e., case-
marking) in the stimuli, rendering their performance 
substantially deviant from the children’s response rates. 
Notably, compared to NCASEV, the LSTM model improved its 
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performance towards Agent-First when additional 
information (a second nominal) appeared in NCASENCASEV. 
This improvement is ascribable to the same reason suggested 
for its performance on the case-marked conditions: a memory 
cell may have helped this model better utilise this additional 
information than the attention mechanism in their search for 
the intended label of this condition. 

General Discussion 
This study’s results can be attributed to various factors. For 
instance, the simulation environment in this study may not 
have perfectly conformed to the experimental setting of Shin 
(2021) to the extent that the models utilised relevant 
information from the stimuli in the exact same way as the 
children did in the experiment. We trained each model with 
all the transitive-event instances in CHILDES, reflecting how 
the children in Shin (2021) attuned their interpretation to 
transitive events before they were exposed to the stimuli. 
Despite this treatment, our models might not have had a 
testing environment fully compatible with the one that the 
children experienced. Moreover, while the experimental 
stimuli in Shin (2021) employed acoustic masking to obscure 
the case markers so the children would notice that there was 
something but hidden, the same stimuli in the simulation 
involved no such acoustic signals. This absence of auditory 
information about the marker(s), which was inevitable given 
the simulation setting in which the models operated 
exclusively with the textual data, may have affected the 
model performance in an unexpected way. Together, 
although we conducted the simulation work as consistently 
with the experimental setting in Shin (2021) as possible, this 
simulation inherently stood on a slightly different ground 
than the experiment (as most modelling research does), 
possibly generating the observed model–children asymmetry. 
However, we highlight that, because these issues have not 
been fully explored yet in this field, we cannot say for certain 
that these are the all-and-only reason of this asymmetry. 

Another possible factor for these models’ odd performance 
is around language-specific properties. While Korean 
caregiver input joins the general characteristics of child-
directed speech (e.g., Cameron‐Faulkner et al., 2003), it also 
manifests language-specific properties such as scrambling 
and omission of sentential components at varying levels. In 
addition to the general nature of caregiver input, the NN 
models may have thus been affected by the specific word 
order and/or the presence of case markers in conducting the 
classification, as shown with the two-argument case-marked 
scrambled condition (NACCNNOMV) and the two case-less 
conditions (NCASENCASEV; NCASEV). This aligns with 
previous reports on language-specific challenges for 
automatic processing of Korean (e.g., Shin & Jung, 2021; 
Kim et al., 2007). Since we are unaware of any study on the 
contribution of language-specific properties to NNs’ 
performance on child language, this claim awaits further 
examination. 

In addition to these factors, we argue that the 
characteristics of these models’ internal algorithms may be a 
core source of this asymmetry. NNs often exploit contextual 

information through window-based computation (Haykin, 
2009; Kriesel, 2007) when given a sampling of data points. 
One common practice regarding this computation is to induce 
contextual information from a particular formal sequence 
involving words/characters; that is, they rely heavily on form. 
This yields a context in a computational sense, but 
importantly, it is qualitatively different from a linguistic 
context, which involves semantic–pragmatic considerations. 
Hence, whenever the models access the meaning/function of 
a linguistic unit, they exploit the formal co-occurrence in the 
incoming input, rather than directly drawing upon the 
meaning/function of the linguistic unit of interest during their 
processing. Moreover, NNs are designed to generalise what 
they already have (through pre-trained models and 
information from the training), but are not designed to make 
reasonable predictions outside of a trained range (Ye, 2020). 
This algorithmic nature—which exclusively utilises 
sequence-based formal information existent within a 
model—may have rendered the models in this study deviant 
from the children’s performance on some test stimuli 
possibly out of range. The key evidence comes from the 
models’ performance on NCASEV (the condition in which a 
simulated learner must determine the thematic role of the first 
and sole case-less noun only with its presence) compared to 
their performance on NNOMV and NACCV (the conditions in 
which the same learner has more, and core, information about 
the first noun’s thematic role indicated by specific case 
markers next to the noun). 

This manner of algorithmic operation differs from how a 
human processor deals with linguistic knowledge, which is 
characterised as simultaneous activation of multiple (non-
)linguistic routes in parallel and immediate mapping of form 
onto function (and vice versa) to reduce the burden of work 
at hand (e.g., Karimi & Ferreira, 2016; McRae & Matsuki, 
2009; O’Grady, 2015; Traxler, 2014), despite the same 
pursuit of efficiency in information processing like a 
computation model. In particular, considering the developing 
nature of a child processor (e.g., Choi & Trueswell, 2010; 
Omaki & Lidz, 2015; Özge et al., 2019; Snedeker & 
Trueswell, 2004), the children in Shin (2021) may have made 
the best (albeit imperfect) use of the information available at 
the time, based on their learning trajectories. That is, when 
they computed the relative agenthood between the two 
arguments with no animacy hierarchy involved, their 
interpretation may have been swayed away by multiple 
sources, including verb semantics, event/world knowledge, 
and cognitive bias such as the Agent-First strategy. 

To conclude, while NNs tested in this study (and perhaps 
any currently developed computational algorithms) can 
utilise information about formal co-occurrences to access the 
intended message to a certain degree, the outcome of this 
process may be substantially different from how a child (as a 
developing processor) engages in comprehension. Despite 
this study’s simulation-wise limitations, the implications of 
the current study provide evidence of some limitation in the 
NNs’ capacity for revealing developmental trajectories of 
child language.  
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