Seongmin Mun (Chosun University) Gyu-ho Shin (Palacky University Olomouc)

20 August 2021

Polysemy in Korean

Distributional semantic models (DSMs)

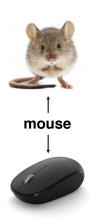
Corpus

Sejong corpus

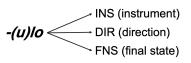
A hand-coded corpus

Methods

Results


Conclusion

0000


Polysemy, one type of ambiguity, occurs when one form delivers multiple meanings/functions (Glynn and Robinson, 2014).

Polysemy in Korean

Korean language

Korean is a Subject-Object-Verb language, which marks grammatical information with dedicated postpositions (Sohn, 1999).

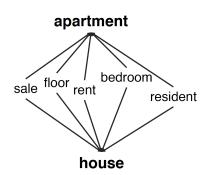
Polysemy in Korean

Polysemy in Korean adverbial postposition

```
범인은 어두운 골목으로 달아났다.
pemi-nun etwuwun kolmok-ulo talan-ass-ta.
criminal-NOM dark alley-DIR flee-PST-DECL
'The criminal fled into a dark alley.'
```

Figure: An example sentence involving the postposition -(u)lo as a function of DIR (direction)

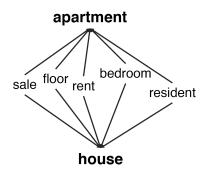
Polysemy in Korear


Question: How can a speaker understand the functions of postpositions?

Polysemy in Korean

Assumption

Construal of a polysemous word occurs in conjunction with a series of words, delivering various framesemantic meanings (Goldberg, 2006) and yet purporting similar interpretations (Harris, 1954).



Distributional semantic models (DSMs)

0000

Concept of DSMs

The concept of distributional semantic models (DSMs) is that a word meaning is closely tied to a context that is created by a group of neighborhood words, dubbed the distributional hypothesis (Firth, 1957; Harris, 1954).

00 0000 0**00**

Previous studies on Korean adverbial postpositions

Study	Corpus type	Data size	Method	Accuracy
Bae et al. (2015)	Korean PropBank	4,882 sentences	One-hot encoding + Structural SVM & FFNN (Feed-Forward Neural Network)	0.75
Kim & Ock (2016)	Sejong corpus	59.220 sentences	One-hot encoding + CRF (Conditional Random Fields Model)	0.83
Lee et al. (2015)	Korean PropBank	4,882 sentences	Word2vec (SGNS) + Structural SVM (Support Vector Machine)	0.77
Mun & Shin (2020)	Sejong corpus	2,100 sentences	PPMI & SVD + Similarity-based estimate	0.74
Park & Cha (2017)	Sejong corpus	14,335 sentences	Word2vec (SGNS) + CRF	0.77
Shin et al. (2005)	Sejong corpus	4,355 sentences	Word token-based embedding + SVM	0.71
Yoon et al. (2016)	Korean PropBank	4,714 sentences	One-hot encoding + Bidirectional LSTM-CRFs	0.66

Distributional semantic models (DSMs)

Context window: a range of words surrounding a target word, affecting the determination of its characteristics (Lison and Kutuzov, 2017).

Distributional semantic models (DSMs)

Question: How does context window address polysemy interpretation in Korean?

Corpus

Sejong corpus

What is Sejong corpus?

- Sejong corpus was created by the 21st Century Sejong Project, a ten-year-long project that was launched in 1998.
- Sejong corpus is a representative large-scale corpus in Korean (Shin, 2008).
- Previous studies often used this corpus as a linguistic resource (e.g., Kim & Ock, 2016; Park & Cha, 2017; Shin et al., 2005).

Sejong corpus

Description for input

- ▶ A portion of Sejong corpus (Shin, 2008), with semantic annotations of -(u)lo cross-verified by three native speakers of Korean (k= 0.95).
- ► Data: 2,100 sentences
 - ► -(u)lo: Final state(700), Instrument(700), Direction(700)


```
Training set

이것/NP 이/JKS 넋두리/NNG (으)로/JKE_FNS 나타나/VV ㄴ다/EF ./SF
달_05/NNG 이/JKS 어느새/MAG 서쪽/NNG (으)로/JKE_DIR 기울/VV 고/EC 있/VX 었/EP 습니다
/EF ./SF

Test set

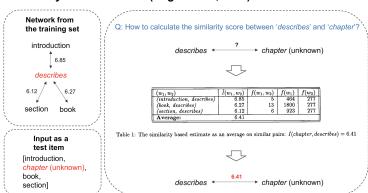
해숙/NNP 이/JKS 복도_04/NNG (으)로/JKB 나가/VV 았/EP 다/EF ./SF
```

Figure: Example sentences used in the model training and testing (-(u)lo)


```
Training set
이것/NP 이/JKS 넋두리/NNG (으)로/JKB_FNS 나타나/VV ㄴ다/EF ./SF
달_05/NNG 이/JKS 어느새/MAG 서쪽/NNG (으)로/JKB_DIR 기울/VV 고/EC 있/VX 었/EP 습니다
/EF ./SF
Test set
해숙/NNP 이/JKS 복도_04/NNG (으)로/JKF_나가/VV 았/EP 다/EF ./SF
```

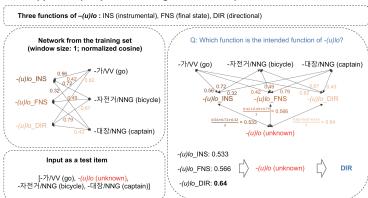
Figure: Example sentences used in the model training and testing (-(u)lo)

Methods



Word embedding model: PPMI-SVD

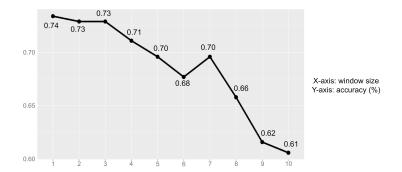
- Model training: Adapting a distributional semantic model (Harris,1954), an unsupervised learning algorithm was devised by combining Singular Value Decomposition with Positive Pointwise Mutual Information (i.e., PPMI-SVD).
- Classification: similarity-based estimate (Dagan et al., 1993) by calculating cosine similarity scores between -(u)lo and its co-occurring content words.


Similarity-based estimate (Dagan et al., 1993)

Similarity-based estimate (Dagan et al., 1993)

Our approach (adapted from Dagan et al., 1993)

Our approach (adapted from Dagan et al., 1993)



Results

Classification: PPMI-SVD

Our model achieved the highest classification accuracy rate in the window size of one, and the accuracy rates decreased as the window size increased.

Conclusion

- ► The result aligns with the small-window-size advantage (Bullinaria Levy, 2007).
- Considering that a narrower range of context window relates more to syntactic than to semantic information (Patel et al., 1997), our model may have employed structural, more than semantic, characteristics of tri-grams (word-target-word) for the best classification performance.
- Evaluation
 - The size of the window affects the accuracy of polysemy interpretation.

Thank you for listening.