Is it easier to segment words in speech directed to a child than an adult?

Seongmin Mun, Eon-Suk Ko & Jun-Ho Chai

28th June 2023

E

イロト イポト イヨト イヨト

Introduction	Methods 000000	Results and Discussion	Conclusion

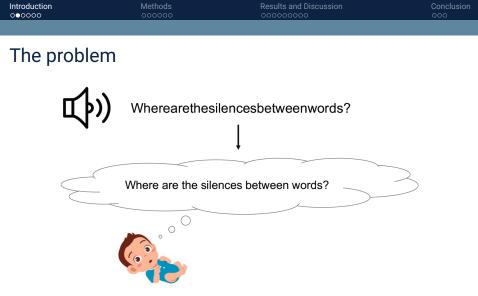
イロト イヨト イヨト イヨト

≡ ∽ ९ (~

Outline

Introduction

Methods


Results and Discussion

Conclusion

Introduction •ooooo	Methods 000000	Results and Discussion	Conclusion

Introduction

▲□▶▲□▶▲□▶▲□▶ = ● のへで

A prerequisite for infants to build a lexicon for word learning is the ability to segment words out of the speech stream. (Jusczyk and Aslin, 1995).

ヘロト 人間 とくほとくほと

Э

Introduction	Methods oooooo	Results and Discussion	Conclusion

CDS vs ADS

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

CDS advantages

 Behavioral studies suggest that infants segments words more easily in CDS (child directed speech) than ADS (adult-directed speech) (Thiessen et al., 2005).

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

E

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Previous studies on word segmentation

Researches	Languages	Algorithms	CDS advantage?
Batchelder (2002)	English, Spanish, Japanese	1	Yes
Fourtassi et al. (2013)	English, Japanese	1	Yes
Ludusan et al. (2017)	Japanese	4	Yes
Cristina et al. (2018)	English	9	Not much
Loukatou et al. (2019)	French	17	Not much

Introduction ○○○○○●	Methods 000000	Results and Discussion	Conclusion

Research question: Are there CDS advantages over ADS in the statistical segmentation of words in Korean?

E

- ∃ →

< A → <

Introduction	Methods ●○○○○○	Results and Discussion	Conclusion

Methods

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

What is Ko corpus?

- Ko corpus containing 35 mothers freely interacting with their own children for about 40 minutes(Ko et al., 2020).
- The same corpus also contains ADS in which the mother talks to their family members and experimenters for about 10 minutes(Ko et al., 2020).

イロト イロト イヨト イヨト

E

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

E

What is Ko corpus?

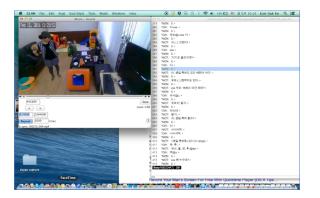


Figure: The pictures show the environment of the apartment where the data were collected and the hand-coded transcriptions.

KoG2P (Cho, 2017)

Orthography:	차가 있어 (i.e., chaakfaa iissvv; There is a car.)
Orthography (for algorithm):	ch aa ;esyll kf aa ;esyll ;eword ii ss ;esyll vv ;esyll ;eword
Phonetic input:	차가 이써 (i.e., chaakfaa iissvv; There is a car.)
Phonetic input (for algorithm):	ch aa ;esyll kf aa ;esyll ;eword ii ;esyll ss vv ;esyll ;eword

ヘロア 人間 アメヨア 人間 アー

∃ ∽ ९ (~

E

Word segmentation models

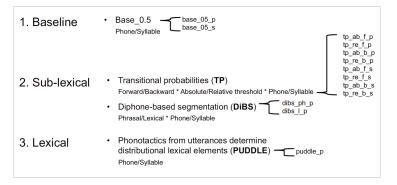
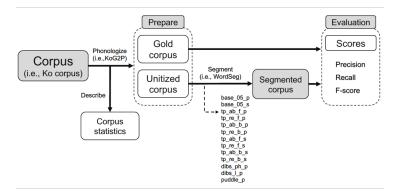



Figure: 13 models from WordSeg package (Bernard et al., 2018)

Introduction	Methods ooooo●	Results and Discussion	Conclusion

Procedure

Figure: The overview of research process

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へ()>

Results and Discussion

Introduction	Methods 000000	Results and Discussion ○●○○○○○○○	Conclusion

Case study 1: Are properties different between CDS and ADS?

200

토 > 토

イロト イロト イヨト イ

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Characteristics of our CDS vs ADS data

Properties	CDS	ADS	р	
Word length (s)	1.679 (.108)	1.735 (.164)	.094	
Utterance length (s)	6.540 (.879)	9.210 (2.763)	.000 ***	
% hapaxes	.216 (.054)	.487 (.069)	.000 ***	
% 1-w phrase	.332 (.059)	.326 (.117)	.779	
MATTR	.837 (.065)	.908 (.034)	.000 ***	
Mono	.239 (.044)	.313 (.057)	.000 ***	
Ono	.042 (.020)	.001 (.003)	.000 ***	
<i>Note</i> . *** p < .001, ** p <	.01, * p < .05; Word le	ngth (s): the average len	gth of words;	
Utterance length (s): the average length of utterances; % hapaxes: percent of hapaxes; % 1-w				
phrase: ratio of single word phrases; MATTR = Moving Average Type to Token Ratio (over a				
liding 10-word window);	Mono = monosyllabic	word; Ono = onomatopo	eia	

Introduction	Methods oooooo	Results and Discussion ○○○●○○○○○	Conclusion

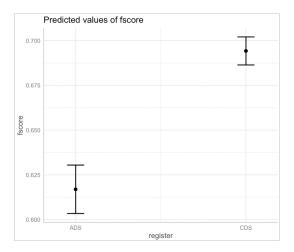
Case study 2: Does CDS have a segmentation advantage over ADS?

≡ ∽ ९ (~

イロト (四) (正) (日)

イロト イヨト イヨト イヨト

1

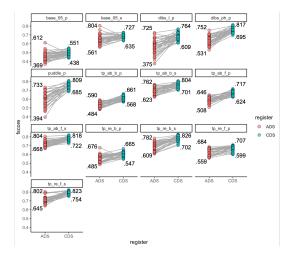

Does CDS have a segmentation advantage over ADS?

Imer(fscore ~ register + algo + (1+register|dyad), data=segDF)

factor	chisq	df	p
register	112.4	1	***
algorithm	6178.9	12	***

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 = のへで

Does CDS have a segmentation advantage over ADS?


Methods 000000

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

590

Does CDS have a segmentation advantage over ADS?

Introduction	Methods 000000	Results and Discussion ○○○○○○●○	Conclusion

Case study 3: Which corpus properties have an effect on the segmentation advantages of CDS?

200

토 > 토

イロト イロト イヨト イ

イロト イヨト イヨト イヨト

1

Which corpus properties have an effect on the segmentation advantages of CDS?

Properties	β	SE	df	t	р
(Intercept)	.942	.068	903	13.883	.000 ***
Word length (s)	009	.034	903	-0.276	.782
Utterance length (s)	017	.002	903	-7.668	.000 ***
MATTR	169	.055	903	-3.099	.002 **
Mono	.038	.050	903	.750	.453
Ono	2.105	.996	903	2.114	.035 *

Introduction	Methods	Results and Discussion	Conclusion
000000	oooooo		●○○

Conclusion

▲□▶▲□▶▲□▶▲□▶ = ● のへで

Conclusion

- The properties of ADS and CDS are different from each other.
- CDS seems to have advantages over ADS in segmentation.

(日)

E

 The different properties of the registers affect the performance of word segmentation.

ヘロア 人間 アメヨア 人間 アー

∃ ∽ ९ (~

Thank you for listening.