A computational approach to resolve the polysemy of postpositions
INn Korean

Introduction

This research features a project on the resolution of polysemy involving
Korean postpositions. An adverbial postposition -(u)lo, for instance, is
either directional or instrumental (Choo, 2008), as exemplified in (1)
and (2).

(1) -(u)lo as directional ((I) went to the road.)
re-(o)g 2xct.
tolo-(u)io ka-ass-ta.
road-DIR go-PST-SE

(2) -(u)lo as instrumental ((I) went by bicycle’)
AARA-(2)2  3IH.
cacenke—-(u)lo ka-ass-ta.
bicycle-INS use-PST-SE

Previous research computational linguistics has attempted to resolve
the polysemy of postpositions in Korean (Shin et al., 2005; Kim et al.,,
2006). However, due to their focus on computational power to the det-
riment of linguistic expertise, the models have done a poor job at re-
solving polysemy. To tell the distinct meanings apart, our method con-
sists in (a) limiting the scope to three of the most frequent postposi-
tions (-ey,-eyse and -(u)lo) as found in the Sejong Corpus (Shin, 2008),
and (b) implementing three kinds of distributional semantic models:

® SVD (Eckart & Young, 1936)
e acombination of PPMI & SVD (Turney & Pantel, 2010)
® SGNS (Tomasetal., 2013)

The annotated corpus designed to represent the functions was used
as trianing data set, and the optimal model was calculated by compatr-
ing the recognition accuracy of the learning models obtained by the
combination of the distributional semantic models and context
window sizes.

Data Processing

The meaning of a word in a sentence can be approximated by its rela-
tion to the co-occurring words (the Distributional Hypothesis). It is thus
assumed that we can identify the polysemy of a word based on infor-
mation obtained from surrounding words and the network of mutual
associations between polysemous word and the surrounding words
with which they occur. In this study, we focus on three postpositions
(-ey,-eyse, and -())/o) that frequently appear in the Sejong Corpus. The
adverbial postposition -eV has 8 functions, -eyse had 2 and -(u)lo 6.
The models were created by a combination of three distributional se-
mantic models and context window sizes and the dimensions of word
embedding were reduced to two dimensions using TSNE.

Preprocessing Visualization

Corpus data
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Visualization

Our visualization selects postposition, function, distributional semantic
model, and context window size. Visualization is divided into three
parts. The first part provides a distributional semantic map using TSNE
to represent the distribution of co-occurring words on a reduced
two-dimension depending on the selected options. The second part
shows the sentences in concordance with the selected postposition
and its function. The third part calculates the similarity between post-
position and co-occurring words using cosine formula and provides
the results with a force-directed graph and table. For a demo, see
https://seongmin-mun.github.io/PostNetwork.ko/index.htm|
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Figure 2. The interface of our visualization represents the relation and network
to the co-occurring words obtained from trained models

Evaluation

We conducted case study limited to adverbial postposition -(u)lo to
assess the performance of the models. The learning curves shows the
accuracy of how accurately function of adverbial postposition -()/o is
classified (figure 3). The performance of the model for SGNS outranked
that the other models and It is not significantly underperforming in
every context window size, which aligns with findings of previous re-
search (Levy et al., 2015). PPMI&SVD yields high performance in con-
text window size 1, accuracy decreased as context window size
became larger. It appears that the size of the context window influ-
ences the model performance for PPMI & SVD. This, therefore, means
that PPMI&SVD tends to induce more syntactic representations since it
has the best performance in context window size 1 that the informa-
tion comes from immediately nearby words (e.g., Jurafsky, 2019; Lison
& Kutuzov, 2017).
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Figure 3: Learning curves for each distributional semantic models ( -(u)lo)
X-axis: context window size; Y-axis: accuracy (%)



