How can we capture multiword expressions?
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Figure 1: Data processing structure. Framework for topic acquisition from corpus data.

Introduction

Topics in a text corpus include features and information. Ana-
lyzing these topics can improve a user’s understanding of the dependency graph: T
corpus. These topics can be divided into two types: those e g it ke Shall I

whose meaning can be described in one word and those i i tom

sentence : ‘Shall | wake him up?’

Result of dependency graph below | Result of multiword candidates

_> I/PRP (dep) | wake Shall 1
whose meaning in expressed through a recurring combination '
of words, also known as multiword expressions (MWE). Out of
context, the MWE ‘she sets the bar high' is ambiguous between
a literal and a metaphorical reading. Ambiguity resolution is
needed to extract accurate topics. Several well-known tech-
nigues have been proposed for topic extraction: TF*PDF (Khoo
Khyou Bun et al., 2002), Topic Detection and Tracking (Kuan-Yu
Chen et al., 2007), LDA (T. L. Griffiths and M. Steyvers, 2004),
inter alia. However, most of these techniques target single
words, not MWEs. In this paper, we propose a system that ex-
tracts MWE-based topics accurately. Our algorithm breaks
down into six steps: Recognition, Pre-Processing, Processing,
Candidate Extraction, Topic Validation, and Storing. We bench-
mark the Evaluation step using ambiguous sentences. Results
show that the algorithm identifies MWEs faster and more accu-
rately. This is because it detects problematic expressions,
parses them in the light of a repository of resolved MWEs, and
manages to provide a correct interpretation. Compiling a re-
pository of MWEs that are correctly parsed and interpreted is
;c:ime consuming. We show how this can be solved in the near
uture.

Case study

We present a data processing architecture for extracting MWEs
from corpus (Fi?ure 1). In the processing, candidate words
were extracted from a combination of tokenized words with
N-grams and reference relations of words with Dependency
structure. Dependency is the notion that linguistic units, e.q.
words, are connected to each other by directed links (Mel'¢Cuk,
Igor A., 2012). Figure 2 illustrates how we can extract multiword
candidates with dependency structure from the example

-> him/PRP (dobj) wake him
-> up/RP (compound:prt) wake up
-> 7/. (punct) wake 7

Figure 2:  Words candidates from Dependency structure

Figure 3 shows the results of extracting meaningful words
using only N-grams and extracting meaningful words using
both dependency tags and N-grams. The result shows that
mo:je meaningful words are returned when both methods are
used.

Final result below Final result below

. wake 1s meaningful : wake

» WOKE 15 meaningiul : weke . shall i is meaningful : shall i

. Shall 1s meaningtul : shall

. 1 15 meaningful : 1

. wake up 1s meaningful : wake up
4. up 1s meaningful : up

. him 1s meaningtul : him

. Shall 1s meaningful : shall

. 1 1S meaningful : 1
. Up 15 meaningful : up

4. shall 1 1s meaningtTul : shall 1
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Figure 3: Comparing the MWEs to N-gram and Dependency tag

Conclusion

Often, MWEs cause problems; Google translation, Stanford
CoreNLP, etc. Those problems can be solved if the algorithm
can extract and recognize MWEs correctly. For this reason, we
made a parsing algorithm to extract MWEs from the corpus.
The case study shows how to extract MWEs. In the near future,
we will create a web application based on our algorithm to vi-
sualize the results and integrate the user's input on MWEs.



