
Université Paris Nanterre

École doctorale 139 – Connaissance, Langage, Modélisation

Polysemy resolution with word embedding models

and data visualization: the case of adverbial

postpositions -ey, -eyse, and -(u)lo in Korean

par Seongmin Mun

Thèse présentée et soutenue publiquement le 18 juin 2021

en vue de l’obtention du grade de

docteur en Traitement Automatique des Langues

sous la direction de Guillaume Desagulier

Membres du jury:

Directeur: Dr. Guillaume Desagulier Université Paris VIII & UMR 7114, MoDyCo
Rapporteur: Prof. Iksoo Kwon Hankuk University of Foreign Studies
Rapporteur: Prof. Laurent Prévot Aix-Marseille Université
Examinatrice: Dr. Caroline Brun Naver Labs Europe
Examinatrice: Prof. Iris Taravella Université Paris Nanterre & UMR 7114, MoDyCo
Examinatrice: Prof. Delphine Battistelli Université Paris Nanterre & UMR 7114, MoDyCo

https://www.parisnanterre.fr/
https://ed-clm.parisnanterre.fr/
https://seongmin-mun.github.io/MyWebsite/Seongmin/index.html




Acknowledgements

There are many who helped me along the way on this journey. First and fore-

most, I am extremely grateful to god.

I would also like to thank my esteemed supervisor, Dr. Guillaume Desag-

ulier for his valuable advice, academic guidance, and continuous support

during my doctoral program. His outstanding knowledge and plentiful expe-

rience have encouraged me in all the time of my academic research, includ-

ing this dissertation project. Without his help, I would never have completed

this journey. It was such a great blessing to have him as my advisor.

Besides my advisor, I would like to acknowledge my dissertation com-

mittee members, Prof. Iksoo Kwon, Prof. Laurent Prévot, Prof. Iris Eshkol-

Taravella, Dr. Caroline Brun, and Prof. Delphine Battistelli for their effort for

my dissertation. They are all outstanding experts in the field with respect to

each part of my dissertation. It was such a great honor to have them as my

committee members.

I also wish to thank all the colleagues and friends for their treasured sup-

port and encouragement during this journey.

Finally, I would like to express my gratitude to my parents, my wife, and

my family. Without their tremendous understanding and encouragement in

iii



the past few years, it would be impossible for me to complete this journey.



Abstract

This dissertation reports computational accounts of resolvingword-level pol-

ysemy in a lesser-studied language—Korean. Postpositions, which are char-

acterized asmultiple form-functionmapping and thus polysemous in nature,

pose a challenge to automatic analysis and model performance in identi-

fying their functions. In this project, I enhance the existing word-level em-

bedding classification models (Positive Pointwise Mutual Information and

Singular Value Decomposition; Skip-Gram and Negative Sampling) with the

consideration of context window, and introduce a sentence-level embedding

classificationmodel (Bidirectional Encoder Representations fromTransform-

ers (BERT)) under the scheme of Distributional SemanticModeling. I then de-

velop two visualization systems that show (i) relationships of the postposi-

tions and their co-occurring words for word-level embeddingmodels, and (ii)

clusters between sentences for the sentence-level embeddingmodel. These

visualization systems have an advantage to better understand how these

classificationmodels classify the intended functions of these postpositions.

Results show that, whereas the performance of the word-level embedding

models ismodulated by the size of training corpora containing specific func-

tions of the postpositions, the sentence-level embedding model performs

v



in a stable way (i.e., less affected by the corpus size) and simulates how

humans recognize the polysemy involving Korean adverbial postpositions

more appropriately than the word-level embedding models do.

Keywords: polysemy, natural language processing, classification, word

embedding models, data visualization, Korean



Contents

1 Introduction 1

1.1 Background of beginning this project . . . . . . . . . . . . . . 2

1.2 Polysemy in Korean adverbial postpositions . . . . . . . . . . 3

1.3 Distributional Semantic Models (DSMs) . . . . . . . . . . . . . 4

1.4 Visualization system . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . 7

2 NLP reaserch on adverbial postpositions in Korean:

-ey, -eyse, and -(u)lo 9

2.1 Previous research on polysemy of -ey, -eyse, and -(u)lo . . . . 10

2.1.1 -ey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 -eyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 -(u)lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Previous NLP research on adverbial postpositions . . . . . . . 22

2.2.1 Use of case frames in dictionaries only . . . . . . . . . 22

2.2.2 Use of probabilistic information from existing corpora 25

2.3 Issues of NLP research on polysemy resolution . . . . . . . . 29

2.4 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . 33

vii



3 PPMI-SVD and SGNS for polysemy resolution 35

3.1 Distributional Semantic Models . . . . . . . . . . . . . . . . . 36

3.2 Count-based model . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Word-word co-occurrence matrix and context window

size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Positive Pointwise Mutual Information . . . . . . . . . 40

3.2.3 Singular Value Decomposition . . . . . . . . . . . . . . 42

3.3 Prediction-based model . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 The one-hot encoding . . . . . . . . . . . . . . . . . . . 50

3.3.2 Continuous Bag Of Words . . . . . . . . . . . . . . . . 52

3.3.3 Skip-Gram and Negative Sampling . . . . . . . . . . . . 59

3.4 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . 63

4 Methodological set-up: PPMI-SVD and SGNS 65

4.1 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 Sejong corpus: General description . . . . . . . . . . . 66

4.1.2 Composition of a corpus with respect to the three ad-

verbial postpositions . . . . . . . . . . . . . . . . . . . 69

4.1.3 Creation of a hand-coded corpus . . . . . . . . . . . . 71

4.1.4 Training and test sets . . . . . . . . . . . . . . . . . . . 73

4.2 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Word-level embedding: PPMI-SVD and SGNS . . . . . . 75

4.2.2 Similarity-based estimation . . . . . . . . . . . . . . . . 76

4.2.3 Classificationmodel adapted fromsimilarity-based es-

timation . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Visualization: PostEmbedding . . . . . . . . . . . . . . . . . . 81



4.3.1 t-SNE and the cosine similarity . . . . . . . . . . . . . . 82

4.3.2 Tasks and design objectives . . . . . . . . . . . . . . . 85

4.3.3 System development . . . . . . . . . . . . . . . . . . . 86

4.3.4 Interface of visualization system . . . . . . . . . . . . 88

4.4 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . 89

5 Results: word-level embeddings 91

5.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Model performance: Classification . . . . . . . . . . . . . . . . 93

5.2.1 Overall accuracy by model: PPMI-SVD and SGNS . . . 93

PPMI-SVD (count-based) . . . . . . . . . . . . . . . . . 93

SGNS (prediction-based) . . . . . . . . . . . . . . . . . 94

5.2.2 Overall accuracy by postpositions: -ey, -eyse, and -(u)lo 96

-ey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

-eyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

-(u)lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.3 Correlation between corpus size and classification ac-

curacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

-ey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

-eyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

-(u)lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Visualization system: clusters and co-occurring words . . . . 112

5.3.1 Changes of clusters by environments (model and win-

dow size) . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.2 Changes of co-occurringwords by the functions of each

postposition . . . . . . . . . . . . . . . . . . . . . . . . 120



-ey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

-eyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

-(u)lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.3 Interim summary of visualization results . . . . . . . . 129

5.4 Discussion of the Chapter . . . . . . . . . . . . . . . . . . . . . 130

5.5 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . 133

6 BERT for polysemy resolution 135

6.1 How BERT was born . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Characteristics of BERT . . . . . . . . . . . . . . . . . . . . . . 144

6.2.1 WordPiece tokenization . . . . . . . . . . . . . . . . . . 145

6.2.2 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Effectiveness of BERT . . . . . . . . . . . . . . . . . . . . . . . 152

6.4 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . 154

7 Methodological set-up: BERT 155

7.1 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.2 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2.1 KoBERT: pre-trained BERT model for Korean . . . . . . 158

7.2.2 BERT fine-tuning by using BertForSequenceClassification159

7.3 Visualization: PostBERT . . . . . . . . . . . . . . . . . . . . . . 162

7.3.1 Tasks and design objectives . . . . . . . . . . . . . . . 163

7.3.2 System development . . . . . . . . . . . . . . . . . . . 164

7.3.3 Interface of visualization system . . . . . . . . . . . . 166

7.4 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . 167

8 Results: sentence-level embedding 169



8.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.2 Model performance: Classification . . . . . . . . . . . . . . . . 171

8.2.1 Overall accuracy by the BERT model . . . . . . . . . . . 171

8.2.2 Overall accuracy by postpositions: -ey, -eyse, and -(u)lo 172

-ey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

-eyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

-(u)lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.2.3 Correlation between corpus size and classification ac-

curacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

-ey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

-eyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

-(u)lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.3 Visualization system: clusters of sentence-level embeddings . 182

8.3.1 -ey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.3.2 -eyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.3.3 -(u)lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.3.4 Interim summary of visualization results . . . . . . . . 200

8.4 Discussion of the Chapter . . . . . . . . . . . . . . . . . . . . . 200

8.5 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . 203

9 Discussion 205

9.1 Interpretations of word-level embedding models: PPMI-SVD

and SGNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.1.1 The number of functions in each postposition . . . . . 206

9.1.2 The role of context window size . . . . . . . . . . . . . 208



9.1.3 The changes in the relationship between postposition

and their co-occurring words . . . . . . . . . . . . . . . 209

9.1.4 Overall discussion of two word-level embedding mod-

els: PPMI-SVD and SGNS . . . . . . . . . . . . . . . . . 212

9.2 Interpretations of sentence-level embedding model: BERT . . 213

9.2.1 The number of functions in each postposition . . . . . 213

9.2.2 The relationship between corpus size of each function

and model performance . . . . . . . . . . . . . . . . . 214

9.2.3 The relationship between the model performance and

epoch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

9.2.4 Overall discussion of sentence-level embeddingmodel:

BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

10 Conclusion 219

10.1 Summary of major findings . . . . . . . . . . . . . . . . . . . . 219

10.2 Limitations and future works . . . . . . . . . . . . . . . . . . . 222

10.3 Implications of findings . . . . . . . . . . . . . . . . . . . . . . 224

References 227

A Algorithms of this dissertation 253

B Code for the word-level embedding models 257

C Code for the sentence-level embedding model 283

D Code for the first visualization system (i.e., PostEmbedding) 321

E Code for the second visualization system (i.e., PostBERT) 387



List of Tables

2.1 Functions of -ey and its frequency in Sejongdictionary (adapted

from Sejong Electronic Dictionary) . . . . . . . . . . . . . . . . 12

2.2 Functions of -eyse and its frequency in Sejongdictionary (adapted

from Sejong Electronic Dictionary) . . . . . . . . . . . . . . . . 17

2.3 Functions of -(u)lo and its frequency in Sejongdictionary (adapted

from Sejong Electronic Dictionary) . . . . . . . . . . . . . . . . 19

2.4 Summary of previous studies on automatic classification of

meanings/functions involving Korean adverbial postpositions

by using case frames in dictionaries only . . . . . . . . . . . . 23

2.5 List of studies on automatic classification of meanings/func-

tions involving Korean adverbial postpositions by using prob-

abilistic information from existing corpora . . . . . . . . . . . 27

3.1 Word-word co-occurrence matrix . . . . . . . . . . . . . . . . . 38

3.2 Word-word co-occurrence matrix with a context window size

as one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Frequency table from -(u)lo/JKB and ka/VV . . . . . . . . . . . 41

3.4 Frequency table (SVD) . . . . . . . . . . . . . . . . . . . . . . . 44

xiii



3.5 The one-hot encoding table . . . . . . . . . . . . . . . . . . . . 51

3.6 Target word and context words in CBOW . . . . . . . . . . . . 53

4.1 By-function frequency list of -ey, -eyse, and -(u)lo . . . . . . . . 70

4.2 By-function frequency list of -ey, -eyse, and -(u)lo in cross-validated

corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Statistical comparisonof each postposition (PPMI-SVD): Two-

sample t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Statistical comparisonof each postposition (SGNS): Two-sample

t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 By-function accuracy for the PPMI-SVD model: -ey . . . . . . . 98

5.4 By-function accuracy for the SGNS model: -ey . . . . . . . . . 100

5.5 By-function accuracy for the PPMI-SVD model: -eyse . . . . . 103

5.6 By-function accuracy for the SGNS model: -eyse . . . . . . . . 104

5.7 By-function accuracy for the PPMI-SVD model: -(u)lo . . . . . 107

5.8 By-function accuracy for the SGNS model: -(u)lo . . . . . . . . 109

5.9 Correlation between the accuracy of each model and of each

function for -ey by window size . . . . . . . . . . . . . . . . . . 110

5.10 Correlation between the accuracy of each model and of each

function for -eyse by window size . . . . . . . . . . . . . . . . 111

5.11 Correlation between the accuracy of each model and of each

function for -(u)lo by window size . . . . . . . . . . . . . . . . 112

8.1 Statistical comparison of each postposition: Two-sample t-test172

8.2 By-function accuracy for the BERT model: -ey . . . . . . . . . . 174

8.3 By-function accuracy for the BERT model: -eyse . . . . . . . . 176



8.4 By-function accuracy for the BERT model: -(u)lo . . . . . . . . 178

8.5 Correlation between the accuracy of the BERT model and of

each function for -ey by epoch . . . . . . . . . . . . . . . . . . 180

8.6 Correlation between the accuracy of the BERT model and of

each function for -eyse by epoch . . . . . . . . . . . . . . . . . 180

8.7 Correlation between the accuracy of the BERT model and of

each function for -(u)lo by epoch . . . . . . . . . . . . . . . . . 181





List of Figures

3.1 Original SVD and SVD to reduce dimension . . . . . . . . . . . 48

3.2 Visualization of results through the one-hot encoding . . . . . 52

3.3 A framework of the CBOW model . . . . . . . . . . . . . . . . 54

3.4 A framework of the Skip-gram model . . . . . . . . . . . . . . 60

4.1 Example of the semantically tagged corpus . . . . . . . . . . 68

4.2 Example of a case frame in the Sejong electronic dictionary . 69

4.3 Example sentences used in model training (-ey, CRT) . . . . . 74

4.4 The process of the k-fold cross-validation technique . . . . . 75

4.5 The similarity-based estimation as an average on similar pairs

(Dagan et al., 1995, p. 167) . . . . . . . . . . . . . . . . . . . . 77

4.6 The training sets and test set used in this dissertation (-eyse) 78

4.7 The classification model process adapted from Dagan et al.

(1993): a case of -(u)lo . . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Reducing a two-dimensional plot to a one-dimensional plot

using the t-SNE . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.9 Interface of visualization system (1) and the main view of the

system (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xvii



5.1 Classification accuracy by window size for the PPMI-SVDmodel 93

5.2 Classification accuracy by window size for the SGNS model . 95

5.3 By-window-size accuracy for the two models: -ey . . . . . . . 96

5.4 By-function accuracy curve for the PPMI-SVD model: -ey . . . 98

5.5 By-function accuracy curve for the SGNS model: -ey . . . . . . 100

5.6 By-window-size accuracy for the two models: -eyse . . . . . . 101

5.7 By-function accuracy curve for the PPMI-SVD model: -eyse . . 102

5.8 By-function accuracy curve for the SGNS model: -eyse . . . . 104

5.9 By-window-size accuracy for the two models: -(u)lo . . . . . . 106

5.10 By-function accuracy curve for the PPMI-SVD model: -(u)lo . . 107

5.11 By-function accuracy curve for the SGNS model: -(u)lo . . . . 108

5.12 Bar chart of density cluster result and distributional semantic

map for -ey (PPMI-SVD). Red in graph = the size of window

showing the highest accuracy. . . . . . . . . . . . . . . . . . . 114

5.13 Bar chart of density cluster result and distributional semantic

map for -eyse (PPMI-SVD). Red in graph = the size of window

showing the highest accuracy. . . . . . . . . . . . . . . . . . . 115

5.14 Bar chart of density cluster result and distributional semantic

map for -(u)lo (PPMI-SVD). Red in graph = the size of window

showing the highest accuracy. . . . . . . . . . . . . . . . . . . 116

5.15 Bar chart of the density cluster result and distributional se-

mantic map for -ey (SGNS). Red in graph = the size of window

showing the highest accuracy. . . . . . . . . . . . . . . . . . . 117

5.16 Bar chart of the density cluster result and distributional se-

mantic map for -eyse (SGNS). Red in graph = the size of win-

dow showing the highest accuracy. . . . . . . . . . . . . . . . 118



5.17 Bar chart of the density cluster result and distributional se-

mantic map for -(u)lo (SGNS). Red in graph = the size of win-

dow showing the highest accuracy. . . . . . . . . . . . . . . . 119

5.18 Distributional semantic map for -ey (PPMI-SVD; window size

of nine) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.19 By-function co-occurring words for -ey: LOC, CRT, THM, and GOL123

5.20 By-function co-occurring words for -ey: FNS, EFF, INS, and AGT 124

5.21 Distributional semanticmap for -eyse (PPMI-SVD;windowsize

of eight) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.22 By-function co-occurring words for -eyse: LOC and SRC . . . . 126

5.23 Distributional semanticmap for -(u)lo (PPMI-SVD;windowsize

of nine) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.24 By-function co-occurring words for -(u)lo: FNS, EFF, INS, and

CRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.25 By-function co-occurring words for -(u)lo: LOC and EFF . . . . 129

6.1 Workflow of the RNN model adapted from Heo (2018) . . . . 137

6.2 Workflow of the attention model adapted from Heo (2018) . . 139

6.3 Workflow of the self-attention model . . . . . . . . . . . . . . 141

6.4 Calculation process of the self-attention model . . . . . . . . 142

6.5 Workflow of the multi-head self-attention model (an encoder

layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.6 Segmentation: Splitting word segments into syllables . . . . . 147

6.7 Workflow of the WordPiece tokenization . . . . . . . . . . . . 148

6.8 Three embedding types for BERT adapted from Devlin et al.

(2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



6.9 Workflow of the Masked Language Model (MLM) . . . . . . . 151

6.10 Workflow of the Next Sentence Prediction (NSP) . . . . . . . . 152

7.1 Example sentences used in the BERT training (-ey, CRT) . . . . 157

7.2 Input embeddings for the BERT classification model . . . . . 160

7.3 The visualization of the sentence-level embeddings for the

word ‘die’ in different contexts (adapted from Coenen et al.

(2019)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.4 The visualization system: the overall interface (1) and themain

view (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.1 Classification accuracy by epoch and by postposition . . . . . 171

8.2 By-epoch accuracy for the BERT model: -ey . . . . . . . . . . . 172

8.3 By-function accuracy curve for the BERT model: -ey . . . . . . 174

8.4 By-epoch accuracy for the BERT model: -eyse . . . . . . . . . 175

8.5 By-function accuracy curve for the BERT model: -eyse . . . . . 176

8.6 By-epoch accuracy for the BERT model: -(u)lo . . . . . . . . . 177

8.7 By-function accuracy curve for the BERT model: -(u)lo . . . . . 178

8.8 Number of density clusters in each epoch: -ey . . . . . . . . . 183

8.9 The distributional map for -ey in epoch one . . . . . . . . . . . 184

8.10 The distributional map for -ey in epoch seven . . . . . . . . . . 186

8.11 The distributional map for -ey in epoch 12 . . . . . . . . . . . . 187

8.12 The distributional map for -ey in epoch 15 . . . . . . . . . . . . 189

8.13 Number of density clusters in each epoch: -eyse . . . . . . . . 190

8.14 The distributional map for -eyse in epoch one . . . . . . . . . 191

8.15 The distributional map for -eyse in epoch nine . . . . . . . . . 192

8.16 Number of density clusters in each epoch: -(u)lo . . . . . . . . 193



8.17 The distributional map for -(u)lo in epoch one . . . . . . . . . 194

8.18 The distributional map for -(u)lo in epoch four . . . . . . . . . 195

8.19 The distributional map for -(u)lo in epoch 12 . . . . . . . . . . 197

8.20 The distributional map for -(u)lo in epoch 46 . . . . . . . . . . 199

9.1 Example of kwanha/VV in the raw corpus . . . . . . . . . . . . 211

10.1 Example of an error extracted from the file V-aphciluta in the

Sejong Electronic Dictionary . . . . . . . . . . . . . . . . . . . 223

A.1 Algorithm of the word-level embedding . . . . . . . . . . . . . 254

A.2 Algorithm of the similarity-based estimation . . . . . . . . . . 255

A.3 Algorithm of the BERT training . . . . . . . . . . . . . . . . . . 256





List of abbreviations

The following abbreviations are used to label the linguistic terms employed

in this dissertation. I follow the Leipzig glossing rules1 for the most abbre-

viations used in linguistic glosses. In addition, for the POS tags used in this

dissertation, I follow the Sejong POS tagging rules2.

1Available at: https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf
2Available at: https://github.com/seongmin-mun/Corpora/tree/main/SPTR

xxiii

https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf
https://github.com/seongmin-mun/Corpora/tree/main/SPTR


Abbreviation Label

ACC Accusative
AGT Agent
CNT Content
COM Comitative
CRT Criterion
DECL Declarative
DIR Direction
EFF Effector
EXP Experiencer
FNS Final State
GOL Goal
IND Indicative
INS Instrument
LOC Location
MAG Mental Agent
NOM Nominative
PL Plural
PRS Present
PST Past
PUR Purpose
SRC Source
THM Theme
TOP Topic



Chapter 1
Introduction

The project presented in this dissertation aims to address the possible ways

and limitations in applying computational approaches to word-level poly-

semy in a lesser-studied language, Korean. Postpositions, which are char-

acterized as having multiple form-function mapping and thus polysemous

in nature, pose a challenge to Natural Language Processing (NLP)-based

analysis of these function words. In this project, I enhance the previous ap-

proaches to this task by creating classification models based on word-level

embeddings—Positive Pointwise Mutual Information and Singular Value De-

composition (PPMI-SVD; Turney and Pantel, 2010) and Skip-Gram and Neg-

ative Sampling (SGNS; Mikolov et al., 2013a)—as well as sentence-level

embedding—Bidirectional Encoder Representations fromTransformers (BERT;

Devlin et al., 2018)—under the scheme of Distributional semantic modeling

(DSM). In addition, to better understand how these classification models

recognize the intended functions of the postpositions, this project imple-

ments visualization systems that show the relationships of the words and

sentences for each model.

1



1.1. BACKGROUND OF BEGINNING THIS PROJECT

1.1 Background of beginning this project

I assume that a relationship of words (represented as probabilistic informa-

tion) is one core factor in understanding how language works. This assump-

tion has led me to explore the relationship obtained from small- or large-

scale corpora empirically in two major directions. One is to develop an au-

tomatic classification system, that classifies language input into appropri-

ate categories, combined with machine learning algorithms. The other is to

create a visualization system that intuitively demonstrates the relationship

between words or sentences. The two directions of my research stand on

statistical inferences and probabilistic approaches to language.

The reason I chose the polysemy of Korean adverbial postposition as the

topic of this dissertation began with a dissatisfaction that I had as I was

working on many collaborative research projects. These covered various lin-

guistic inquiries in a lesser-studied language—Korean. I found that during

the data processing, a lot of NLP-based studies removed Korean adverbial

postpositions as stop words, which are filtered out and not used. The reason

for this is that the word-level polysemy of Korean adverbial postpositions

creates problems making the results difficult to interpret (e.g., Bae and Lee,

2015, Lee et al., 2015). However, unlike other Indo-European languages, post-

positions play a very important role in Korean (e.g., Ahn, 1983, Hong, 1978,

Jeong, 2010, Lee, 1983, Nam, 1993, Park, 1999, Song, 2014). Moreover, they

have a great influence on the interpretation of the results that are obtained

fromNLP-based analysis (e.g., Bae et al., 2015, Shin et al., 2005). Due to their

importance, previous studies have worked on resolving the polysemy of Ko-

rean adverbial postpositions by applying computational approaches (e.g.,

2



CHAPTER 1. INTRODUCTION

Cho and Kim, 1996, Jeong, 2010, Nam, 1993, Park, 1999, Song, 2014). Like-

wise, for this doctoral dissertation, I chose this topic and aim to apply com-

putational approaches to resolve the problems that occur with theword-level

polysemy of these postpositions.

1.2 Polysemy in Korean adverbial postpositions

Korean, the language of interest in this dissertation, is a Subject-Object-Verb

language,whichmarks case informationwith dedicated postpositions (Sohn,

1999). Korean postpositions are divided into two categories: (i) grammatical,

indicating syntactic relationships between content words and (ii) semantic,

indicating specific functions according to the context of the particular sen-

tence (Sohn, 1999). Specifically, the ones classified as semantic, can involve

many-to-many mappings of form and function, and are thus polysemous

(Choo and Kwak, 2008). In this dissertation, I narrow down the scope to three

adverbial postpositions: -ey, -eyse, and -(u)lo. This is because these three are

themost frequently used ones and documented in the previous studies (e.g.,

Cho and Kim, 1996, Jeong, 2010, Nam, 1993, Park, 1999, Song, 2014). I then

determine the number of functions of each postposition based on the def-

inition of the Sejong project1, which is the Korean national corpus involving

several Korean universities andmore than five hundred Korean linguists. For

example, the adverbial postposition -ey is interpreted as having eight major

functions: location (LOC), goal (GOL), effector (EFF), criterion (CRT), theme

(THM), instrument (INS), agent (AGT), and final state (FNS) (Shin, 2008). Sup-

pose the following sentence involving the postposition -ey as a function of

1Available at: https://www.korean.go.kr

3

https://www.korean.go.kr


1.3. DISTRIBUTIONAL SEMANTIC MODELS (DSMS)

LOC (Location) as in (1)2.

(1) 지붕

cipung

Roof

위에

wi-ey

top-loc

구멍이

kwumeng-i

hole-nom

났다.

na-ss-ta.

be.out-pst-decl

‘There is a hole on the top of the roof.’

Native speakers of Korean (or someone who has good knowledge about

Korean) can easily understand the intended function of -ey in (1). From this,

the question arises as to how a speaker or computer can understand the

function of -ey as LOC given its various functions.

1.3 Distributional Semantic Models (DSMs)

As a possible way to answer the aforementioned question, I make use of

the distributional semantic models (DSMs) in this dissertation. The funda-

mental idea of DSMs is that the meaning of a word is closely related to the

context that is created by a group of neighboring words (Bullinaria and Levy,

2007, Turney and Pantel, 2010). This idea originates from early works in the-

oretical linguistics by Harris (1954) and Firth (1957). Harris (1954) states that

words that occur in similar contexts tend to have similar meaningswhile Firth

(1957) states that you shall know a word by the company it keeps. For ex-

ample, house and apartment frequently occur with context words like rent,

bedroom, sale, etc., giving evidence to computational models that house and

apartment may be similar to each other. Importantly, many studies reported

the strength of distributional semantic models to resolve the word-level pol-

2This dissertation follows the Yale romanization of Korean, which is the standard roman-
ization of the Korean language in linguistics.

4



CHAPTER 1. INTRODUCTION

ysemy (e.g., Bae et al., 2015, Lee et al., 2015, Mun and Shin, 2020, Shin et al.,

2005). Hence, I choose the distributional framework as themain concept for

the computational approaches for this dissertation.

The DSMs are composed of two types ofword embeddingmodels. One is

a count-basedmodel which is sensitive to the token frequency (Jurafsky and

Martin, 2019). The other is a prediction-based model that relies on the type

frequency (Mikolov et al., 2013a)). In addition, previous studies have shown

that the traditional word embeddingmodels have an advantage of represent-

ing the relationship between words (e.g., Bae et al., 2015, Lee et al., 2015,

Mun and Shin, 2020, Shin et al., 2005). In this dissertation, I employ a combi-

nation of Positive Pointwise Mutual Information (PPMI; Church and Hanks,

1989) and Singular Value Decomposition (SVD; Eckart and Young, 1936) as a

count-based model, and Skip-Gram and Negative Sampling (SGNS; Mikolov

et al., 2013a) as a prediction-based model. This is because previous studies

most frequently investigated thesemodels and reported better performance

than other models for the classification task (e.g., Baroni et al., 2014, Levy

et al., 2015, Melamud et al., 2016, Riedl and Biemann, 2017).

In addition to these, I introduce BERT (particularly a multi-head self-

attention model), the latest and cutting-edge deep learning, as an additional

type of word embedding model. This type is called contextualized word em-

bedding model. Unlike the traditional word embedding models, this one as-

signs vectors to all words differently, even if the forms of the words are the

same as each other. For this reason, this model is used more for sentence-

level embedding than for word-level. Various models have been suggested

for contextualized word embedding such as Embeddings from Language

Models (Peters et al., 2018), Generative Pre-Training (Radford et al., 2018),

5



1.4. VISUALIZATION SYSTEM

and Bidirectional Encoder Representations from Transformer (BERT; Devlin

et al., 2018). However, among these, BERT shows the best performance in

many tasks such as translation, classification, and question-answering (De-

vlin et al., 2018, Tang et al., 2019). Due to this, I chose BERT as the sentence-

level embedding model for the classification task to identify the intended

function of a postposition in a sentence.

1.4 Visualization system

Previous NLP-based research on polysemy resolution has an issue in that

they focused on enhancing the model performance to classify the functions

of postpositions and they did not try to explore the relationships around post-

positions (e.g., Kim et al., 2006, 2007, Kim and Ock, 2016). As stated previ-

ously, BERT achieved superior performance in many tasks (e.g., Dai and Le,

2015, Peters et al., 2018, Radford et al., 2018). However, it is somewhat un-

clear how BERT deals with the polysemy resolution (e.g., Clark et al., 2019,

Coenen et al., 2019, Devlin et al., 2018, Tang et al., 2019). Improving the per-

formance of classificationmodels is undoubtedly important, but it is also im-

portant to see how the relationship between postposition and co-occurring

words changeswith the particular function of postposition andhow themodel

recognizes the intended function of postpositions in the sentence.

To remedy these issues, I propose two visualization systems of the re-

spective (chosen) models. These visualization systems have the advantage

of helping to identify relationships between words and to show changes in

the relationships based on the contexts where these words manifest. More-

over, these systems can help the general audience understand (i.e., how

6



CHAPTER 1. INTRODUCTION

model works, how the relationship between words/sentences changes)

through an informative display of outcomes from each model (e.g., Coenen

et al., 2019, Mun and Lee, 2016, Mun et al., 2014).

1.5 Outline of the Dissertation

This dissertation is organized as follows: Chapter 2 provides a review of

previous studies on the three adverbial postpositions: -ey, -eyse, and -(u)lo,

which occur frequently in language use. This chapter also discusses the is-

sues in previous studies, which focused mostly on improving the classifica-

tion accuracy and did not pay attention to the environment around postposi-

tions. Chapter 3 provides an overview of the algorithms of how to calculate

and apply the word-level embedding classification models (Positive Point-

wise Mutual Information and Singular Value Decomposition; Skip-Gram and

Negative Sampling) with the consideration of the context window. Chapter 4

introduces three parts in relation to the use of theword-level embedding clas-

sificationmodels: (i) methodological details, (ii) a hand-coded corpus, which

tagged intended functions of postpositionsmanually, and (iii) design of visu-

alization. Chapter 5 reports on the results of the word-level embedding clas-

sificationmodels and the visualization in relation to the three research ques-

tions, and the issues of the models. Chapter 6 provides the history of how

BERTwas born and an overview of the algorithms of how to calculate and ap-

ply it. Chapter 7 introduces the methodological details of the sentence-level

embedding classification models and design of the BERT-based visualiza-

tion. Chapter 8 reports on the results of the models and the visualization

by using BERT in relation to the two research questions. Chapter 9 provides

7



1.5. OUTLINE OF THE DISSERTATION

the overall discussion of this dissertation. Finally, Chapter 10 provides the

conclusions of this dissertation and suggestions for future works.

8



Chapter 2
NLP reaserch on adverbial postpositions in

Korean:

-ey, -eyse, and -(u)lo

Korean, a Subject-Object-Verb language, is agglutinative in thatmultiple post-

positions or affixes with dedicated forms and meanings are attached to the

stem of nominals or predicates. A postposition is a function word provid-

ing grammatical information to words it is attached (Sohn, 1999). Korean

postpositions are divided into two categories. One category includes gram-

matical case markers such as nominative -i/ka, accusative -(l)ul, and pos-

sessive -uy, indicating syntactic relationships between content words. The

other category consists of semantic postpositions that express adverbial

functions, indicating specific functions such as locational and instrumental.

Many of the semantic postpositions are polysemous due to their many-to-

many mapping of form and function, which accompanies functional ambi-

guity. This chapter summarizes three adverbial postpositions, -ey, -eyse, and

-(u)lo, which occur frequently in language use and thus frequently explored in

9



2.1. PREVIOUS RESEARCH ON POLYSEMY OF -EY, -EYSE, AND -(U)LO

studies on Korean postposition (e.g., Cho and Kim, 1996, Jeong, 2010, Nam,

1993, Park, 1999, Song, 2014), focusing on the multiple functions involving

each form.

2.1 Previous research on polysemy of -ey, -eyse,

and -(u)lo

2.1.1 -ey

The Standard-Korean dictionary (1999) defines the adverbial postposition -ey

as a postposition that gives the preceding word the function of the location.

Based on this definition, the primary function of -ey is location. However, this

definition is neither accurate nor specific enough to capture all the essen-

tial functions of -ey. For this reason, previous research has investigated the

functions of -ey in two lines. One line of research is concerned with various

functions of -ey obtained through the semantic relationship between it and

its noun or predicate (e.g., Ahn, 1983, Hong, 1978, Lee, 1983). The other line

explores the basic functions of -ey (e.g., Jung, 1988, Lee, 1981). Some re-

searchers also propose their own claims for the types of functions involving

-ey. For example, Cho and Kim (1996) classified 10 types. Nam (1993) argued

that the relationship between a (pro-)noun and a predicate combined with a

postposition is important to determine its function, which yielded 14. From a

more practical perspective, Song (2014) suggested as the main function an

indication of a location or movement of a physical target. He also explained

that the function could be extended regarding as scope, situation, criteria,

time, goal, method, and reason. Together, there is no clear consensus as to

10



CHAPTER 2. NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:
-EY, -EYSE, AND -(U)LO

the precise number/type of functions involving -ey.

To determine the number of functions of each postposition, this disser-

tation puts special emphasis on eight major functions of -ey, which are fre-

quently attested in the Sejong dictionary. These are also commonly men-

tioned in the previous studies, with location and goal occupying the majority

of the occurrences. Of the functions of -ey defined by the Sejong project1 (Ta-

ble 2.1), I selected the eight most frequent as the main one of -ey. Note that,

although I classify the functions into designated types, each one is rather

flexible due to the difficulty in creating standard definitions of individual func-

tions that everyone agrees with (Kang and Park, 2003).

1Available at: https://www.korean.go.kr

11

https://www.korean.go.kr


2.1. PREVIOUS RESEARCH ON POLYSEMY OF -EY, -EYSE, AND -(U)LO

Table 2.1: Functions of -ey and its frequency in Sejong dictionary (adapted
from Sejong Electronic Dictionary)

Function Abbreviation Use
Location LOC 1,328
Goal GOL 665
Effector EFF 150
Criterion CRT 124
Theme THM 58
Instrument INS 17
Agent AGT 13
Final State FNS 11
Experiencer EXP 5
Source SRC 3
Mental Agent MAG 2
Companion COM 2
Content CNT 2
Purpose PUR 2

Location (LOC) is a function that represents the spatial domain where an

event occurs. In the following sentence (i.e. this sentence is extracted from

the file V-phamwuthita in the Sejong Electronic Dictionary), -ey is playing the

same role as in in English.

(1) -ey as LOC (location)

그는

ku-nun

He-TOP

온종일

oncongil

all day

서재에

secay-ey

study.room-LOC

파묻혀

phamwut-hi-e

bury.in-PSV-PRS

지낸다.

cinay-n-ta.

be-PRS-DECL

‘He is buried in his study room all day.’

Goal (GOL) is a function that indicates the preceding word is where the

12



CHAPTER 2. NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:
-EY, -EYSE, AND -(U)LO

object reaches. In the following sentence (i.e., this sentence is extracted

from the file V-naylyekkochita in the Sejong Electronic Dictionary), -ey is play-

ing the same role as to in English.

(2) -ey as GOL (goal)

철수가

Chelswu-ka

Chelswu-TOP

던진

tenc-i-n

throw-CST-PRS

칼이

khal-i

knife-NOM

땅바닥에

ttangpatak-ey

ground-GOL

내리꽂혔다.

naylyekkoc-hi-ess-ta.

stick-PSV-PST-DECL

‘The knife that Chelswu threw stuck to the ground.’

Effector (EFF) is a function that indicates that the preceding word influ-

ences the theme to act or change when an event occurs. In the following

sentence (i.e., this sentence is extracted from the file V-kentultayta in the Se-

jong Electronic Dictionary), -ey is playing the same role as by in English.

(3) -ey as EFF (effector)

문들이

mwun-tul-i

door-PL-NOM

거센

keseyn

strong

바람에

palam-ey

wind-EFF

모두

motwu

all

건들댄다.

kentultay-n-ta.

sway-PRS-DECL

‘The doors all sway by the strong wind.’

Criterion (CRT) is a function that indicates that the preceding word is the

degree of value of the theme. In the following sentence (i.e., this sentence

is extracted from the file V-nakchalhata in the Sejong Electronic Dictionary),

-ey is playing the same role as for in English.

13



2.1. PREVIOUS RESEARCH ON POLYSEMY OF -EY, -EYSE, AND -(U)LO

(4) -ey as CRT (criterion)

영호는

Yenghuy-nun

Yenghuy-TOP

20만원에

20manwen-ey

200,000 won-CRT

모니터를

monithe-lul

moniter-ACC

낙찰했다.

nakchalhay-ss-ta.

sell-PST-DECL

‘Yenghuy sold the monitor (to a bidder) for 200,000 won.’

Theme (THM) is a function that makes the preceding word as an entity

that is affected by the action of the verb. In the following sentence (i.e., this

sentence is extracted from the file V-hekicita in the Sejong Electronic Dictio-

nary), -ey is playing the same role as for in English.

(5) -ey as THM (theme)

현대인들은

hyentayin-tul-un

modern.people-PL-TOP

모두

motwu

all

참된

chamtoy-n

true-REL

지식에

cisik-ey

knowledge-THM

허기져있다.

hekicye-iss-ta.

hungry-PRS-DECL

‘All modern people are hungry for true knowledge.’

Instrument (INS) is a function that indicates the preceding word engages

in an action or a process as a tool. In the following sentence (i.e., this sen-

tence is extracted from the file V-nokita in the Sejong Electronic Dictionary),

-ey is playing the same role as in in English.

14



CHAPTER 2. NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:
-EY, -EYSE, AND -(U)LO

(6) -ey as INS (instrument)

그

ku

That

어린

eli-n

young-REL

소년은

sonye-nun

boy-TOP

화롯불에

hwalospwul-ey

fire-INS

손을

son-ul

hand-ACC

녹이고

nok-i-ko

melt-CST-and

있었다.

iss-ess-ta.

be-PST-DECL

‘The young boy was using the fire to warm his hands.’

Agent (AGT) is a function thatmakes the preceding word as an entity that

intentionally carries out the action of the verb. In the following sentence (i.e.,

this sentence is extracted from the file V-cecitoyta in the Sejong Electronic

Dictionary), -ey is playing the same role as by in English.

(7) -ey as AGT (agent)

가두

katwu

street

진출이

cinchwul-i

go.out-NOM

경찰에

kyengchal-ey

police-AGT

저지되었다.

ceci-toy-ess-ta.

stop-PSV-PST-DECL

‘By going out to the street was stopped by the police.’

Final state (FNS) is a function that allows the preceding word to present

the current state. In the following sentence (i.e., this sentence is extracted

from the file V-chwuchenhata in the Sejong Electronic Dictionary), -ey is play-

ing the same role as as in English.

15



2.1. PREVIOUS RESEARCH ON POLYSEMY OF -EY, -EYSE, AND -(U)LO

(8) -ey as FNS (final state)

김교수는

kimkyoswu-nun

professor.Kim-TOP

조교에

cokyo-ey

assistant-FNS

박군을

park-kwun-ul

Park-Mr-ACC

추천했다.

chwuchenhay-ss-ta.

recommend-PST-DECL

‘Professor Kim recommended Park as an assistant.’

2.1.2 -eyse

The Standard-Korean dictionary (1999) defines the adverbial postposition -

eyse as a postposition indicating that the preceding word is a location where

an action is being made. -eyse has fewer functions than the other two post-

positions -ey and -(u)lo (Choo and Kwak, 2008). However, the frequency of its

use is equally high compared to that of the others (e.g., Cho and Kim, 1996,

Song, 2014). Researchers generally agree with the primary function as the

location which engages in departure of action (e.g., Cho and Kim, 1996, Park

et al., 2000, Song, 2014) and the Sejong corpus also demonstrates the same

tendency. As Table 2.2 shows, the two functions (source and location) are

overwhelmingly more frequent than the others.

16



CHAPTER 2. NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:
-EY, -EYSE, AND -(U)LO

Table 2.2: Functions of -eyse and its frequency in Sejong dictionary (adapted
from Sejong Electronic Dictionary)

Function Abbreviation Use
Source SRC 487
Location LOC 197
Agent AGT 6
Goal GOL 4
Theme THM 4
Criterion CRT 4
Direction DIR 2
Final State FNS 1

This dissertation follows this skewedness in frequency, focusing on these

two functions. Therefore, -eyse has only two functions, source (9) and loca-

tion (10). Source (SRC) is a function that indicates the origin of an action,

the point at which the action is initiated. In the following sentence (i.e., this

sentence is extracted from the file V-ppopaollita in the Sejong Electronic Dic-

tionary), -eyse is playing the same role as from in English.

(9) -eyse as SRC (source)

광부들이

kwangpwutul-i

miner-PL-NOM

바다에서

pata-eyse

sea-SRC

석유를

sekyu-lul

oil-ACC

뽑아올린다.

ppopaoll-i-n-ta.

pull-CST-PRS-DECL

‘Miners pull oil from the sea.’

The definition of the location (LOC) is the same as described for -ey (loca-

tion). In the following sentence (i.e., this sentence is extracted from the file

V-thayenata in the Sejong Electronic Dictionary), -eyse is playing the same

role as in in English.

17



2.1. PREVIOUS RESEARCH ON POLYSEMY OF -EY, -EYSE, AND -(U)LO

(10) -eyse as LOC (location)

철수는

Chelswu-nun

Chelswu-TOP

서울에서

sewul-eyse

seoul-LOC

태어났다.

thayena-ss-ta.

born-PST-DECL

‘Chelswu was born in Seoul.’

2.1.3 -(u)lo

The Standard-Korean dictionary (1999) defines the adverbial postposition -

(u)lo as a postposition indicating the direction of movement, stating that the

key concept to understanding the functions of -(u)lo involves direction. How-

ever, it is somewhat vague to pinpoint the essential and typical functions by

using this concept. In fact, this postposition has a variety of functions, and

many researchers have proposed different viewpoints on this issue. To illus-

trate, Park (1999) claimed that the central function is instrumental, and that

there are 9 more functions, such as path, direction, point of direction, time,

state change, qualification, material, cause, and manner. In contrast, Jeong

(2010) puts the directional function at the center of the various ones and ex-

plained the relationship between the core function and the extended ones.

The classification in the Sejong project (Table 2.3) is somewhat different

from these two studies, stating that there are six major functions of -(u)lo,

with the top three (final state; instrumental; directional) occupying more than

80 per cent of the entire use. Because the Sejong corpus is widely used in

studies on Korean (e.g., Kang and Park, 2003, Kim et al., 2007, Park and Cha,

2017, Shin et al., 2005), and this dissertation also employs this corpus for

investigation, I follow the classification it provides.

18



CHAPTER 2. NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:
-EY, -EYSE, AND -(U)LO

Table 2.3: Functions of -(u)lo and its frequency in Sejong dictionary (adapted
from Sejong Electronic Dictionary)

Function Abbreviation Use
Final State FNS 857
Instrument INS 561
Direction DIR 324
Effector EFF 38
Criterion CRT 22
Location LOC 9
Content CNT 6
Source SRC 5
Theme THM 5
Experiencer EXP 1
Agent AGT 1

The definition of the final state (FNS) is the same as described in (8)

above. In the following sentence (i.e., this sentence is extracted from the

file V-chopingtoyta in the Sejong Electronic Dictionary), -(u)lo is playing the

same role as as in English.

(11) -(u)lo as FNS (final state)

그는

ku-nun

He-TOP

대표

tayphyo

representative

강사로

kangsa-lo

lecturer-FNS

초빙되었다.

choping-toy-ess-ta.

invite-PSV-PST-DECL

‘He was invited as a representative lecturer.’

The definition of instrument (INS) is the same as described in (6) above.

In the following sentence (i.e., this sentence is extracted from the file V-

kamkita in the Sejong Electronic Dictionary), -(u)lo is playing the same role

19



2.1. PREVIOUS RESEARCH ON POLYSEMY OF -EY, -EYSE, AND -(U)LO

as with in English.

(12) -(u)lo as INS (instrument)

전선이

censen-i

wire-NOM

연줄로

yencwul-lo

connection.wire-INS

감겼다.

kam-ki-ess-ta.

wind-PSV-PST-DECL

‘The wire wound around with the connection wire.’

Direction (DIR) is a function to indicate the direction of the theme’smove-

ment. In the following sentence (i.e., this sentence is extracted from the file

V-talanata in the Sejong Electronic Dictionary), -(u)lo is playing the same role

as toward in English.

(13) -(u)lo as DIR (direction)

범인은

pemin-un

criminal-NOM

어두운

etwuwun

dark

골목으로

kolmok-ulo

alley-DIR

달아났다.

talana-ss-ta.

flee-PST-DECL

‘The criminal fled into a dark alley.’

The definition of effector (EFF) is the same as described in (3) above.

In the following sentence (i.e., this sentence is extracted from the file V-

koylowehata in the Sejong Electronic Dictionary), -(u)lo is playing the same

role as due to in English.

20



CHAPTER 2. NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:
-EY, -EYSE, AND -(U)LO

(14) -(u)lo as EFF (effector)

환자가

hwanca-ka

patient-NOM

위암으로

wiam-ulo

stomach.cancer-EFF

매우

maywu

very

괴로워하고

koyloweha-ko

suffer-and

있습니다.

iss-supni-ta.

be-HON-DECL

‘The patient is suffering greatly due to stomach cancer.’

The definition of criterion (CRT) is the same as described in (4) above.

In the following sentence (i.e., this sentence is extracted from the file V-

paychatoyta in the Sejong Electronic Dictionary), -(u)lo is playing the same

role as at in English.

(15) -(u)lo as CRT (criterion)

적당한

cektangha-n

appropriate-REL

시간

sikan

time

간격으로

kankyek-ulo

interval-CRT

배차되었다.

paycha-toy-ess-ta.

arrange-PSV-PST-DECL

‘It was arranged at appropriate time intervals.’

The definition of LOC is the same as described in (1) above. In the follow-

ing sentence (i.e., this sentence is extracted from the file V-apsonghata in the

Sejong Electronic Dictionary), -(u)lo is playing the same role as to in English.

(16) -(u)lo as LOC (location)

경찰이

kyengchal-i

police-NOM

피해자를

phiuyca-lul

suspect-ACC

검찰로

kemchal-lo

prosecution-LOC

압송했다.

apsonghay-ss-ta.

transport.do-PST-DECL

‘The police transported the suspect to the prosecution.’

21



2.2. PREVIOUS NLP RESEARCH ON ADVERBIAL POSTPOSITIONS

2.2 Previous NLP research on adverbial postposi-

tions

Studies on word-level polysemy in Korean have focused mainly on catego-

rizing different meanings/functions of polysemous words for the essential

interpretation of linguistic phenomena (e.g., Ahn, 1983, Hong, 1978, Lee, 1983,

Maeng, 2016). Researchers working on computational linguistics in Korean

have followed this trend and developed systems that automatically classify

and recognize these multiple meanings/functions involving the words in or-

der to deal with linguistic items in an easier andmore efficient way (e.g., Bae

and Lee, 2015, Kang and Park, 2003, Kim et al., 2007, Kim and Ock, 2015).

Previous studies on automatic classification of functions involving Korean

adverbial postpositions have employed two methods according to the types

of information used: exclusive use of case frames in dictionaries, and heavy

use of probabilistic information about grammatical relations from existing

corpora.

2.2.1 Use of case frames in dictionaries only

The first method concerns the application of case frames (i.e., semantic re-

lationships between words in a sentence), which are pre-defined and stored

in a separate document, to a dictionary (i.e., a document that explains case

frames that described manually according to the meanings of the words).

Table 2.4 presents a summary of studies on automatic classification by us-

ing case frames in dictionaries only.

22



CHAPTER 2. NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:
-EY, -EYSE, AND -(U)LO

Table 2.4: Summary of previous studies on automatic classification of
meanings/functions involving Korean adverbial postpositions by using case
frames in dictionaries only

Study Corpus type Data size Accuracy
Bae et al. (2014) Korean Prop-

Bank
5,771 sentences 0.62

Jo et al. (2015) Korean Prop-
Bank

1,000 sentences 0.80

Kang and Park
(2003)

Sejong corpus
and Kadokawa
synonyms

208,088 ecel 0.88

Kim and Ock
(2015)

UPropBank 65,529 sen-
tences

0.72

Park and Kim
(1998)

School textbook
(elementary and
middle)

2,012 sentences 0.81

Park and Cha
(2017)

Sejong corpus 14,335 sen-
tences

0.77

Kim and Ock (2015) created UPropBank, a case frame dictionary, based

on the standard Korean dictionary and established a semantic role labeling

system by using the frequency of words and case frames. To determine the

functions of postpositions, 59,257 out of 65,529 sentences were used as

a training set and the remaining 6,272 sentences were used as a test set

for measuring model performance. The performance was measured in four

ways: (i) using case frames only, (ii) using case frames and information of

particles, (iii) using case frames and information about particles and predi-

cates, and (iv) using case frames and information about particles and pred-

icates but excluding preceding predicates. The results showed that, when

only case frames were used, the accuracy rate was 0.78, which is a high ac-

curacy rate compared to other methods.

23



2.2. PREVIOUS NLP RESEARCH ON ADVERBIAL POSTPOSITIONS

Park and Cha (2017) conducted a similar study by combining various

methods such as case frames, information of nouns and predicates, and

information of clusters. Unlike Kim and Ock (2015), they found that the ac-

curacy for semantic role labelingwas the highest (at the rate of 0.79)when all

the information was considered. The results of the two studies differed be-

cause the corpus used in the study by Kim and Ock (2015) and the one used

by Park andCha (2017)were different. In addition, the information used in the

studies differed. Kim and Ock (2015) used information such as case frames,

particles, predicates, whereas Park and Cha (2017) used case frames, nouns,

predicates, clusters in their studies was different.

This line of research has shown high accuracy in determining the func-

tions of postpositions, with the advantage that the semantic-functional char-

acteristics of these being determined by calculating the similarities between

grammatical structures and case frames being defined manually by the re-

searchers (e.g., Kim and Ock, 2015, Park and Cha, 2017). However, creating

accurate/appropriate case frames for this case frame-based method con-

sumes considerable resources and time. This method also has the problem

in that only the information described in the case frame dictionary is applica-

ble to automatic processing, which leads a model to achieve a low coverage

rate2 for the data (e.g., Kang and Park, 2003, Kim and Ock, 2015, Park and

Kim, 1998).

2This refers to how much the data is explained by the model.

24



CHAPTER 2. NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:
-EY, -EYSE, AND -(U)LO

2.2.2 Use of probabilistic information from existing corpora

The other method, using probabilistic information about grammatical rela-

tions from existing corpora, utilizes annotated corpus data with individual

meanings and/or functions of a word (mostly by hand) and applies statis-

tical learning techniques to classifying the functions. A case frame-based

model is not applicable to data if the information in the model and those in

the data do not match. For example, suppose the case frame involving the

postposition -(u)lo as a function of FNS as in (17)3.

(17) THM-i/JKS FNS-(u)lo/JKB ppophy/VV

We apply this case frame to two sentences ((18)-(19)).

(18) hyeng/NNG-i/JKS

hyeng-i

brother-THM

tayphyo/NNG-(u)lo/JKB

tayphyo-ulo

representative-FNS

ppophy/VV-ass/EP-ta/EF./SF

ppophy-ass-ta.

elect-PST-DECL

‘My brother was elected as a representative.’

(19) tayphyo/NNG-(u)lo/JKB

tayphyo-ulo

representative-FNS

hyeng/NNG-i/JKS

hyeng-i

brother-THM

ppophy/VV-ass/EP-ta/EF./SF

ppophy-ass-ta.

elect-PST-DECL

‘My brother was elected as a representative.’

In the case of (18), the i/JKS, -(u)lo/JKB, and ppophy/VV used in the case

frame are all attested, and theword order is the same aswhat the case frame

represents, thus is applied reliably. In contrast, in (19), the elements are at-

tested in the sentence, but the word order does not match, thus impossible

to apply. For this reason, if only case frame information is used in a model,

3The abbreviations of part of speech are available at: https://github.com/seongmin-
mun/Corpora/tree/main/SPTR

25

https://github.com/seongmin-mun/Corpora/tree/main/SPTR
https://github.com/seongmin-mun/Corpora/tree/main/SPTR


2.2. PREVIOUS NLP RESEARCH ON ADVERBIAL POSTPOSITIONS

sentences that do not follow the precise characteristics of the case frames

cannot be processed. However, a probabilistic information-basedmodel can

be applied even though a mismatch arises between the model and the data

with respect to key information (e.g., Bae et al., 2015, Shin et al., 2005). This

probabilistic information-based method thus achieves a higher rate of cov-

erage than the case frame-based method (e.g., Bae and Lee, 2015, Lee et al.,

2015). Table 2.5 presents a summary of studies on automatic classification

of functions involving postpositions by using probabilistic information.

26



CHAPTER 2. NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:
-EY, -EYSE, AND -(U)LO

Table 2.5: List of studies on automatic classification of meanings/functions
involving Korean adverbial postpositions by using probabilistic information
from existing corpora

Study Corpus
type

Data
size

Case
frame?

Probabilistic
method?

Accuracy

Bae and
Lee (2015)

Korean
Prop-
Bank

4,882
sen-
tences

No Yes (Bidirectional
Long Short-Term
Memory model
and Recurrent
Neural Network)

0.78

Bae et al.
(2015)

Korean
Prop-
Bank

4,882
sen-
tences

No Yes (Structural
Support Vector
Machine and
Feed-Forward
Neural Network)

0.75

Kim et al.
(2007)

Sejong
corpus

34,371
sen-
tences

Yes Yes (Self-training
algorithm)

0.83

Kim et al.
(2006)

Sejong
corpus

58,238
sen-
tences

Yes Yes
(Bootstrapping
algorithm)

0.88

Kim and
Ock
(2016)

UPropBank
and
UWordMap

23,966
sen-
tences

Yes Yes (Conditional
Random Fields
Model)

0.83

Lee et al.
(2015)

Korean
Prop-
Bank

4,882
sen-
tences

No Yes (Structural
Support Vector
Machine)

0.77

Shin et al.
(2005)

Sejong
corpus

Unclear
(42,332
files)

Yes Yes (Support
Vector Machine)

0.71

27



2.2. PREVIOUS NLP RESEARCH ON ADVERBIAL POSTPOSITIONS

Lee et al. (2015) employed an SVM to propose a semantic role labelling

system. In the study, 4,096 sentences were used for learning and 786 sen-

tences were used for test, which obtained an accuracy of 0.77 for classifica-

tion. Bae and Lee (2015) proposed a method using Bidirectional Long Short-

Term Memory models, Recurrent Neural Networks and Conditional Random

Field as probabilisticmethod. In this study, several types of information were

used for learning, such as a predicate, the targetword, words before and after

the target word, and Part-Of-Speech information. The result showed an ac-

curacy of 0.78 in classifying functions of postpositions. Overall, probability-

based methods achieved a high level of accuracy and coverage rate. Never-

theless, this accuracy is often affected by data size and/or genre(s).

Shin et al. (2005) proposed an alternative method that complemented

shortcomings of both methods by using case frames in dictionaries and

probabilistic information together. In the study, they used the case frame in-

formation first in order to determine the functions of postpositions; and if the

input sentence was not applicable to use, they then employed the SVM al-

gorithm. The result showed 0.71 when both methods were applied together,

rather than only one or the other.

Although a few more studies used both methods in a hybrid manner to

determine the functions of postpositions (e.g., Kim et al., 2006, 2007, Kim

and Ock, 2016), they generally failed to address polysemy under linguistic

perspectives, ignoring important questions such as how postpositions re-

late to the co-occurring words. One reason for this limitation is that previous

research often lacked clear motivation that connected computational tech-

niques and investigation of language phenomena, which made it harder to

apply their approaches to addressing linguistic inquiries.

28



CHAPTER 2. NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:
-EY, -EYSE, AND -(U)LO

2.3 Issues of NLP research on polysemy resolu-

tion

Previous research has attempted to identify functions of postpositions using

grammatical/semantic relationships between the postpositions and their

neighbors in a sentence. However, they focused mostly on improving the

accuracy of classifying the functions and did not pay attention to the envi-

ronment around postpositions, such as co-occurring words, which generate

a cluster centering around the postposition. From a linguistic perspective,

a relationship of interlinked clusters of words is undoubtedly a valuable lan-

guage resource because it showshowpolysemy is interpreted through them.

In this regard, the distributional semantic models (DSMs; Baroni et al., 2014),

which argue that a word meaning is closely tied to a context that is created

by a group of neighborhood words, draws attention to the computational un-

derstanding in human language (e.g., Bullinaria and Levy, 2007, Turney and

Pantel, 2010).

In computational linguistics, the DSMs are generally used to investigate

the meaning of a word in a sentence (see explanation in Chapter 3). They

convert contextual information obtained through the words surrounding a

target word into vectors (see explanation in Chapter 3). Based on this infor-

mation, various computational techniques can be applied to these vectors

in order to measure the semantic similarity of the word (e.g., Clark, 2015,

Erk, 2012, Turney and Pantel, 2010). The model represents each word as a

dimensional vector of the number of occurrence and the vectors close to

each other appear to be semantically relevant (Levy et al., 2015). In addition,

by visualizing the relationship of clusters representing the embedded words,

29



2.3. ISSUES OF NLP RESEARCH ON POLYSEMY RESOLUTION

we can intuitively identify the relationships of words.

Based on the DSMs, previous studies have been conducted to identify the

meaning of words and their relationships with the surrounding words (e.g.,

Desagulier, 2014, Hilpert, 2016, Li et al., 2015).

Hilpert (2016) is one representative study in this respect. He conducted a

diachronic corpus-based study of the English modal auxiliary may, focusing

on changes in its collocational preferences during the past 200 years, and

displayed a visualization of embedded word cluster. The point of this paper

was the argument that constructional views need to consider the mutual as-

sociations between modal auxiliaries and the lexical elements with which

they occur. In the study, 50-million-word samples of the Corpus of Contem-

porary American English (COCA; Davies, 2008) were used as a corpus and

the distribution of 250 verbs that occur frequently with may was visualized

over time applying word embeddings (Positive Pointwise Mutual Informa-

tion; Church and Hanks, 1989). Results showed that say and seewere impor-

tant verbs in the period of 1800s-1860s, but their importance flattened out

as time elapsed. It also showed that the use of depend, exist, involve, enable,

and indicatewas expanding and increasing over time. His research suggests

that DSMs allow us to see changes of the relationship between oneword and

the co-occurring words by way of changes of clusters that these words pro-

duce.

However, some crucial questions about the DSMs remain unanswered.

One relates to the effectiveness of various techniques of word embeddings

on converting contextual information into vectors. The DSMs comprise of

two types of word embeddings: count-based model (e.g., Singular Value De-

composition (SVD); Eckart and Young, 1936) and prediction-based model

30



CHAPTER 2. NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:
-EY, -EYSE, AND -(U)LO

(e.g., Skip-Gram and Negative Sampling (SGNS); Mikolov et al., 2013a). Sev-

eral studies have investigated the differences between several word embed-

ding models (e.g., Baroni et al., 2014, Levy et al., 2015, Melamud et al., 2016,

Riedl and Biemann, 2017).

For instance, Levy et al. (2015) suggested a study comparing four word

embedding models; Positive Pointwise Mutual Information (PPMI, Church

and Hanks, 1989, Dagan et al., 1995, Niwa and Nitta, 1994) and SVD as count-

based word embeddings, and SGNS and Global Vectors for Word Represen-

tation (Pennington et al., 2014) as prediction-based embeddings. In their study,

the English Wikipedia (August 2013 dump), pre-processed by removing non-

textual elements, sentence splitting, and tokenization, was used as corpus. It

contained 77.5million sentences, spanning 1.5 billion tokens. The evaluation

for the performance of the model was divided into Word Similarity and Anal-

ogy. For Word Similarity, datasets were adapted from the similarity score of

human-assigned word pairs, such as WordSim353 (Finkelstein et al., 2002)

and SimLex-999 (Hill et al., 2014). The word vectors were evaluated by rank-

ing the pairs according to their cosine similarities and by calculating the cor-

relation (Spearman’s) with the ratings of humans. For Analogy, the correct

answer data were divided into semantic and grammatical phrases, such as

MSR’s analogy dataset (Mikolov et al., 2013c) and Google’s analogy dataset

(Mikolov et al., 2013b). The accuracy of the correct answer was measured

by using the match between queries recorded in the analogy datasets and

answers obtained by each model. Results showed that SVD outperformed

other models in the Word Similarity task, whereas SGNS yielded the best re-

sult in MSR datasets and PPMI dominated Google dataset in the Analogy

task. Based on these results, it was recommended that SGNS and SVD with

31



2.3. ISSUES OF NLP RESEARCH ON POLYSEMY RESOLUTION

the window of size 4 is best in setting the hyperparameters for the embed-

ding models.

Another unanswered question relates to the role of the context window

size—a range of words surrounding a target word, which affects the deter-

mination of the characteristics of the word (Lison and Kutuzov, 2017)—in

the calculation for word embeddings. It is important to consider the context

window in the calculation because the size affects how the relationship be-

tween the target word and the surrounding words are represented. Previous

studies have reported the effect of context window sizes on model perfor-

mance (e.g., Bullinaria and Levy, 2007, 2012, Garcia and Gamallo, 2011, Hen-

estroza Anguiano and Denis, 2011, Hung and Yang, 2009, Levy and Goldberg,

2014, Levy et al., 2015, Lison and Kutuzov, 2017, Peirsman et al., 2007).

To illustrate, Bullinaria and Levy (2007) showed that the semantic vec-

tor of Pointwise Mutual Information values achieved the best performance

when the context window size was one. In contrast, Han et al. (2013) showed

that context windows as large as 16 to 32 achieved high performance in

dealing with polysemy. Despite a good amount of research on some major

languages in exploring this issue (e.g., English: Bullinaria and Levy (2007),

French: Henestroza Anguiano and Denis (2011), German: Peirsman et al.

(2007), Spanish: Garcia andGamallo (2011), Chinese: Hung andYang (2009)),

previous research still fell short of ensuring generalizability of methodology

across languages. In particular, they did not address issues of word em-

beddings and context window size in searching for the appropriate clusters

when it came to polysemy interpretation in languages typologically different

from the researched languages, such as Korean.

32



CHAPTER 2. NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:
-EY, -EYSE, AND -(U)LO

2.4 Summary of the Chapter

Among the adverbial postpositions in Korean, -ey, -eyse, and -(u)lo have been

studied actively because of the frequency of use in the language and the

various functions of each postposition. In this dissertation, the specific func-

tions of these postpositions are based on the Sejong dictionary. For -ey, there

are eight functions, with LOC and GOL occurring most frequently. For -eyse,

there are twomajor functions, SRCand LOC. And for -(u)lo, there are sixmajor

functions, with FNS, INS, and DIR occupying the majority of the occurrences.

The NLP studies on automatic classification of functions involving these

postpositions are divided into two approaches: exclusive use of case frames

in dictionaries, and major use of probabilistic information about grammati-

cal relations from existing corpora. Recently, studies have been proposed

that have increased the performance of automatic classification by merg-

ing these two types of approaches and classifying the functions of adver-

bial postpositions. However, these studies only cared about the accuracy of

classification and did not pay attention to the environment between postpo-

sitions and surrounding words, which generates a cluster centering around

the postposition.

By paying more attention to the environment between postpositions and

surrounding words, DSMs (Baroni et al., 2014) are drawing attention to the

computational understanding in human language, which allows us to obtain

a cluster of interlinkedwords. However, they have two crucial aspects to con-

sider: choice of word embedding models and context window sizes.

In this dissertation, I adopt the idea that DSMs provide clusters between

the target word and the co-occurring words, and use this idea to identify en-

33



2.4. SUMMARY OF THE CHAPTER

vironments between the three Korean adverbial postpositions and their sur-

rounding words when the functions change.

34



Chapter 3
PPMI-SVD and SGNS for polysemy

resolution

Linguists have benefitted from adopting quantitative approaches in address-

ing linguistic inquiries (Gries, 2015) bymaking full use of automatic process-

ing techniques provided by computers (Turney and Pantel, 2010). One recent

trend of quantitative studies is employing statistical learning (e.g., Bae and

Lee, 2015, Bullinaria and Levy, 2007, Desagulier, 2014, Hilpert, 2016, Kimet al.,

2006, 2007, Kim and Ock, 2016, Levy and Goldberg, 2014, Levy et al., 2015, Li

et al., 2015). Among the variousmethods, the DSMs have drawn the attention

of many researchers who aim at understanding word meaning (e.g., Baroni

et al., 2014, Bullinaria and Levy, 2007). This is because the results generated

through DSMs can be used to understand and visualize how the target word

is interpreted and how itsmeaning changes based on the co-occurringwords

(e.g., Hilpert, 2016, Li et al., 2015).

35



3.1. DISTRIBUTIONAL SEMANTIC MODELS

3.1 Distributional Semantic Models

The distributional hypothesis (Firth, 1957, Harris, 1954) which is the idea be-

hind the DSMs states that a word meaning is closely related to the con-

text created by a group of neighboring words (Baroni et al., 2014). In its ac-

tual application, the DSMs convert contextual information that is obtained

through the words surrounding a target word into vectors. They then apply

machine learning algorithms to these vectors in order tomeasure the seman-

tic similarity of theword (Clark, 2015, Erk, 2012, Turney and Pantel, 2010). The

DSMs have two types of word embedding: count-based (e.g., Singular Value

Decomposition (SVD): Eckart and Young, 1936) and prediction-based (e.g.,

Skip-Gram and Negative Sampling (SGNS): Mikolov et al., 2013a).

This dissertation uses a combination of Positive Pointwise Mutual In-

formation (PPMI: Church and Hanks, 1989) and SVD, and SGNS. These are

the most frequently investigated models from previous studies (e.g., Baroni

et al., 2014, Levy et al., 2015, Melamud et al., 2016, Riedl and Biemann, 2017).

The following sections outline each technique, with an emphasis on how it

works and is applied to this dissertation.

3.2 Count-based model

The count-based model learns vocabulary based on a corpus and models

each word by counting the number of times each word appears (Bullinaria

and Levy, 2007). Themost fundamental task for this model is to convert cor-

pus data into vectors, using severalways such as aword-word co-occurrence

matrix (e.g., Davies, 2015, Hilpert, 2016) and a term-document matrix (e.g.,

36



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

Salton, 1971, Turney and Pantel, 2010). Researchers choose the particular

way of vectorizing according to the purpose of their study (Jurafsky andMar-

tin, 2019). For example, a word-word co-occurrence matrix is used to see the

relationship betweenwords, while a term-documentmatrix is used to see the

relationship between documents (Jurafsky and Martin, 2019). This disserta-

tion utilizes a word-word co-occurrencematrix to check the relation between

postposition and its co-occurring words.

3.2.1 Word-word co-occurrence matrix and context window

size

A word-word co-occurrence matrix is computed by counting instances in

which two or more words occur together in a given corpus (Jurafsky and

Martin, 2019). For example, suppose the following corpus extracted from

the Sejong corpus involving the postposition -(u)lo as a function of DIR (Di-

rection) as in ((1)-(3)):

(1) pang_07/NNG -(u)lo/JKB ka/VV ass/EP ta/EF ./SF

pang-ulo

room-DIR

ka-ass-ta.

go-PST-DECL

‘(I) went to the room.’

(2) pakk/NNG -(u)lo/JKB nao/VV ass/EP ta/EF ./SF

pakk-ulo

outside-DIR

na-o-ass-ta.

be.out-come-PST-DECL

‘(I) went out to the outside.’

37



3.2. COUNT-BASED MODEL

(3) aph/NNG -(u)lo/JKB tallyeka/VV ass/EP ta/EF ./SF

aph-ulo

forward-DIR

tallyeka-ass-ta.

run-PST-DECL

‘(I) ran forward.’

Table 3.1 presents the word-word co-occurrence matrix for this corpus.

Table 3.1: Word-word co-occurrence matrix

pang_07/NNG pakk/NNG aph/NNG -(u)lo/JKB . . . ./SF
pang_07/NNG 0 0 0 1 . . . 1
pakk/NNG 0 0 0 1 . . . 1
aph/NNG 0 0 0 1 . . . 1
-(u)lo/JKB 1 1 1 0 . . . 3
. . . . . . . . . . . . . . . . . . . . .

./SF 1 1 1 3 . . . 0
Note. Columns and rows are labeled by words.

Each cell records the number of times the row (target) word and the col-

umn (context) word co-occur in the above context. In the case of -(u)lo, it

has a value of one with each word, except ./SF with a value of three (be-

cause both occur in each sentence).

A word-word co-occurrence matrix is generally used in combination with

a context window, that is, a range of words surrounding a target word af-

fecting the determination of the characteristics of the word (Lison and Kutu-

zov, 2017). Consider the same corpus with the context window size as one,

counting one word to the left and one word to the right of the target word.

This shows the number of times (in the training sentences) that the column

word occurs in a one-word window around the row word (Jurafsky and Mar-

38



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

tin, 2019). This change produces a new word-word co-occurrence matrix as

in Table 3.2. In this table, the co-occurrence count of pang_07/NNG and ./SF

is zero showing that the size of the context window has a direct influence on

the embedding results.

Table 3.2: Word-word co-occurrence matrix with a context window size as
one

pang_07/NNG pakk/NNG aph/NNG -(u)lo/JKB . . . ./SF
pang_07/NNG 0 0 0 1 . . . 0
pakk/NNG 0 0 0 1 . . . 0
aph/NNG 0 0 0 1 . . . 0
-(u)lo/JKB 1 1 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

./SF 0 0 0 0 . . . 0
Note. Columns and rows are labeled by words.

Word embedding in consideration of context window size generally cal-

culates co-occurrence with the words located on both sides of the target

word (Lison and Kutuzov, 2017). Lison and Kutuzov (2017) presented a sys-

tematic analysis of the context window to understand its exact role for word

embedding. Employing SGNSas an embeddingmodel, they used two English

language corpora: Gigaword v5 (Parker et al., 2011), with approximately four-

billion-word tokens of newswire, and the English version of OpenSubtitles

(Lison and Tiedemann, 2016), with approximately 700million-word tokens of

movie and TV subtitles. They showed that the performance of word embed-

ding using only the words on the left of the target word was worse than that

of using words on both sides. For the Gigaword corpus, it also showed that

using words on the right performed as well as using both sides, perform-

39



3.2. COUNT-BASED MODEL

ing only one percentage point less than using both sides. Based on these

studies, I used words on both sides of the target word when using context

window size in word embedding.

3.2.2 Positive Pointwise Mutual Information

Each cell of a word-word co-occurrence matrix represents the number of

times two words occurred at the same time, but the number of occurrences

may not serve as a good feature to present the relationship of two words.

For example, consider the co-occurrence between the postposition -(u)lo and

./SF in the previous example. They are both used in all the sentences, so the

matrix in Table 3.1 shows that ./SF is highly related to -(u)lo due to the high

frequency of ./SF although it is not related to -(u)lo.

PPMI (Church andHanks, 1989) dealswith this issue effectively byweigh-

ing the association between two words in the search of the co-occurrence

of these words in a corpus (Jurafsky and Martin, 2019). To understand how

PPMI works, we first need to look at Pointwise Mutual Information (PMI:

Fano, 1961). PMI measures how often two words (a target word w and a

context word c) occur compared to what is expected if they are independent

of each other, as formalized in (3.1).

PMI(w, c) = log 2
P (w, c)

P (w)P (c)
(3.1)

Suppose a hypothetical frequency table (Table 3.3) obtained froman imag-

inary corpus consisting of 1,000 sentences with 700 sentences involving -

(u)lo/JKB and 600 sentences involving ka/VV.

40



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

Table 3.3: Frequency table from -(u)lo/JKB and ka/VV

-(u)lo/JKB ¬ [-(u)lo/JKB] count(w)
ka/VV 400 200 600
¬ [ka/VV] 300 100 400
count(w) 700 300 1000

Note. ¬ stands for ‘not’

We can calculate the PMI score between the two words as follows:

P (w = -(u)lo/JKB, c = ka/VV) =
400

1000
= 0.4

P (w = -(u)lo/JKB) =
400

700
= 0.571

P (c = ka/VV) =
400

600
= 0.667

PMI(-(u)lo/JKB, ka/VV) = log 2
0.4

(0.571 ∗ 0.667)
= 0.07038933

The PMI values range from negative to positive. However, if the corpus

size is not large enough, the negative PMI value is less reliable and cannot be

used. Furthermore, studies on themeaning ofwords do not use negative PMI

because it does not express the meaning of the target word (Jurafsky and

Martin, 2019). For this reason, it ismore common to use Positive PMI (PPMI),

which replaces all the negative PMI valueswith zero. But thismethod has the

disadvantage of losing information that can be obtained from negative PMI

(e.g., Church and Hanks, 1989, Dagan et al., 1995, Niwa and Nitta, 1994).

41



3.2. COUNT-BASED MODEL

3.2.3 Singular Value Decomposition

Using PPMI as a weighting function for a word-word co-occurrencematrix is

known to yield genuine co-occurrence relations of two words by suppress-

ing unreasonable relationships between words. However, there still remain

issues such as the size of a co-occurrence matrix. For example, suppose

that the corpus size continues to increase. The column and row of a word-

word co-occurrence matrix will then increase respectively (i.e., dimensions

increase in proportion to the number of words). Handling multi-dimension

data then requires more computational capacities and resources, rendering

this line of research as challenge.

As a remedy for this issue, SVD (Eckart and Young, 1936) was devised

by reducing the dimensions of a co-occurrence matrix while maintaining the

information of the matrix (e.g., Bullinaria and Levy, 2007, 2012, Hachey et al.,

2006, Landauer et al., 1998, Levy and Goldberg, 2014, Schütze, 1992). This is

formalized as in (3.2) where A is anm by n rectangular matrix, U is anm bym

orthogonal matrix composed of the left singular vector of A, Σ is an m by n

diagonal matrix, and V is an n by n orthogonal matrix composed of the right

singular vector of A.

A = UΣV T (3.2)

The column vectors belonging to the matrix U and V are singular vectors

and are orthogonal to each other.

42



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

U =

[
u1 u2 . . . um

]

V =

[
v1 v2 . . . vn

]
UTU = I

V TV = I

The singular vectors of the matrix Σ are all greater than or equal to zero.

The singular vector σk , the kth diagonal element of the matrix Σ, is equal to

the value taken by the square root at the kth eigenvalue of the matrix AAT .

σk =
√

λk

This below describes more detail about the SVD formula defined in (3.2).

A = UΣV T =

[
u1 u2 . . . um

]


√
λ1 0 . . . 0

0
√
λ2 . . . 0

. . . . . . . . . . . .

0 0 . . .
√
λk





v1

v2

. . .

vn



To illustrate the calculation process, suppose a 2 by 2 square matrix as

in Table 3.4.

43



3.2. COUNT-BASED MODEL

Table 3.4: Frequency table (SVD)

aph/NNG -(u)lo/JKB
-(u)lo/JKB 4 0
ka/VV 3 5

In this table, the co-occurrence frequency of aph/NNG and -(u)lo/JKB is

four, -(u)lo/JKB and -(u)lo/JKB is zero, aph/NNG and ka/VV is three, ka/VV

and -(u)lo/JKB is five. The table is then represented by the matrix below:

A =

4 0

3 5



First of all, a diagonal matrix, Σ can be calculated as shown below:

AAT =

4 0

3 5


4 3

0 5

 =

16 12

12 34



AAT − λI =

16− λ 12

12 34− λ


((16− λ) ∗ (34− λ))− (12 ∗ 12) = 0

(λ2 − 50λ+ 400) = 0

(λ− 40) ∗ (λ− 10) = 0

44



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

The resulting calculated eigenvalues are λ1,λ2 = 40, 10 and singular val-

ues are σ1, σ2 =
√
40,

√
10. Then, the following Σ can be obtained through the

given eigenvalues and singular values.

Σ =


√
40 0

0
√
10



The next step is to calculate V.

If λ1 = 40,

16− λ 12

12 34− λ


u1

u2

 =

0
0


−24 12

12 −6


u1

u2

 =

0
0


−12u1 + 6u2 = 0

u1, u2 = 1, 2

X1 =

1
2



45



3.2. COUNT-BASED MODEL

If λ1 = 10,

16− λ 12

12 34− λ


u1

u2

 =

0
0


 6 12

12 24


u1

u2

 =

0
0


18u1 + 36u2 = 0

u1, u2 = −2, 1

X2 =

−2

1



Then, the following V can be obtained through the given X1, X2.

V =

[
X1 X2

]
=

1 −2

2 1



The final step is to calculate U using the previously calculated values.

Σ =


√
40 0

3
√
10

 , V =

1 −2

2 1

 , V V T =

1 −2

2 1


 1 2

−2 1

 =

5 0

0 5


46



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

A = UΣV T

AV = UΣV TV = UΣ5

1

5
AV Σ−1 = U

U =
1

5

4 0

3 5


1 −2

2 1

 =

0.1581 0

0 0.3162



U =

0.1264 −0.5059

0.4111 −0.6957



By applying the values ofU,Σ andV, the following results can be obtained:

A =

0.1264 −0.5059

0.4111 −0.6957



√
40 0

3
√
10


 1 2

−2 1

 =

4 0

3 5



The above calculation process represents the general formula for SVD.

To reduce the dimension, this technique selects the number of dimensions

K, as shown in Figure 3.1.

47



3.2. COUNT-BASED MODEL

Figure 3.1: Original SVD and SVD to reduce dimension

For example, in the above calculation process, the results of the calcula-

tion by setting K as one is as follows:

A =

0.1264
0.4111

 ∗
√
40 ∗

[
1 2

]
=

0.7994 1.5988

2.6 5.2



In addition, reduction of the number of dimensions in the data from two

to one produces the following values:

48



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

ReducedA = U + (V T )T =

0.1264
0.4111

+

1
2

 =

1.1264
2.4111



This reduction often leads to losing some information about the data, but

the approximation of A is still calculated.

For this reason, SVD is generally used to analyze a large-sized corpus.

However, there still remain concerns about the loss of information due to

dimension reduction (Hachey et al., 2006). Many studies compared SVD-

based results with those from unreduced word-word co-occurrence matrix

representations (e.g., Hachey et al., 2006, Matveeva et al., 2005, Pedersen

et al., 2005). Hachey et al. (2006) conducted a comparison between the

word-word co-occurrence matrix applying SVD with an unreduced version.

They used the DUC 2005 data (Dang, 2005) with approximately 100 mil-

lion words and utilized the Infomap tool to build a semantic model based

on SVD. Results showed that SVD dimensionality reduction improved per-

formance over a word-word co-occurrence model for computing relevance

and redundancy. Overall, these previous studies suggest that if the corpus is

large enough, it is more efficient to use a reduced co-occurrence matrix by

applying SVD than an unreduced version of the co-occurrence matrix (e.g.,

Hachey et al., 2006, Matveeva et al., 2005).

In summary, with regards to the count-based model, SVD was mainly

used (e.g., Agirre and Lopez de Lacalle, Gliozzo et al., 2005, Hachey et al.,

2006), and a combination of PPMI and SVD has also been used recently

(e.g., Hilpert, 2016, Turney, 2008, Turney and Pantel, 2010). In this disser-

49



3.3. PREDICTION-BASED MODEL

tation, PPMI and SVD are applied to word embedding, in order to evaluate

which model is more suitable for exploring polysemy issues in Korean.

3.3 Prediction-based model

The prediction-based model is another way to obtain dense vectors such

as SVD. This model is based on probability information about the meaning

between words and is efficient in conducting tasks such as word similarity

(e.g., Mikolov et al., 2013a,b). Similar to the count-based model, converting

contexts into vectors is a priority for the prediction-basedmodel. A represen-

tative study is Mikolov et al. (2013b) which introduced Word2Vec. Generally,

the one-hot encodingmethod is used for this model (Mikolov et al., 2013a,b).

3.3.1 The one-hot encoding

The one-hot encoding is a method that uses 0 and 1 to represent a unique

index for eachword (Ammar et al., 2016). For example, suppose the following

corpus involving the postposition -(u)lo as a function of DIR (Direction) as in

((4)-(5)).

(4) pang_07/NNG -(u)lo/JKB ka/VV n-ta/EF ./SF

pang-ulo

room-DIR

ka-n-ta.

go-PRS-DECL

‘(I am) going to the room.’

50



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

(5) pakk/NNG -(u)lo/JKB nao/VV ta/EF ./SF

pakk-ulo

outside-DIR

na-o-ta.

be.out-come-DECL

‘(I) go outside.’

This corpus has eightword types (pang_07/NNG,pakk/NNG, -(u)lo/JKB, ka/VV,

nao/VV, n-ta/EF, ta/EF and ./SF). The one-hot encoding converts these word

types into an eight-dimensional space as in Table 3.5.

Table 3.5: The one-hot encoding table

Words Encoding
pang_07/NNG [1,0,0,0,0,0,0,0]
pakk/NNG [0,1,0,0,0,0,0,0]
-(u)lo/JKB [0,0,1,0,0,0,0,0]
ka/VV [0,0,0,1,0,0,0,0]
nao/VV [0,0,0,0,1,0,0,0]
n-ta/EF [0,0,0,0,0,1,0,0]
ta/EF [0,0,0,0,0,0,1,0]
./SF [0,0,0,0,0,0,0,1]

Each word has its own encoding value as an independent vector. How-

ever, one-hot encoding does not present similarity between thewords through

the given vectors (Ammar et al., 2016). For instance, the words in Table 3.5

are expressed in eight dimensions, and if these words are expressed in a

two-dimensional chart, each word is represented by 11.25 degrees (i.e., 90

degrees divided by eight). Becausemathematically the position of eachword

can be obtained by dividing the angle of the two-dimensional space by the

number of multi-dimensional spaces. As in Figure 3.2, the distance between

each word is same as each other and every word vector is orthogonal with

51



3.3. PREDICTION-BASED MODEL

the 90 degrees. For this reason, the similarity such as cosine and Euclidean

cannot be calculated with the vector of words obtained by one-hot encoding.

Instead, it can be calculated by applying the embeddingmodels such as SVD

and Word2Vec, which converts the word into dense vectors.

Figure 3.2: Visualization of results through the one-hot encoding

3.3.2 Continuous Bag Of Words

Word2Vec is not a single algorithm but a combination of two techniques:

continuous bag of words (CBOW, i.e., predicting the target word from bag-

of-words contexts; Mikolov et al., 2013b) and skip-gram and negative sam-

pling (SGNS, i.e., predicting context words given the target word; Mikolov

et al., 2013a). Both of these are neural networks using the relation between

the target word and co-occurring words and learning weights of word vector

52



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

representations.

We start from CBOW. For instance, suppose the following sentence as in

(6).

(6) pang_07/NNG -(u)lo/JKB ka/VV n-ta/EF ./SF

pang-ulo

room-DIR

ka-n-ta.

go-PRS-DECL

‘(I am) going to the room.’

CBOWuses the surroundingwords such as pang_07/NNG, ka/VV, n-ta/EF,

./SF to predict the target word -(u)lo/JKB. The word being predicted is called

the target word and the words being used for prediction are called the con-

text word. A context window is used to determine the number of surrounding

words to be used to predict the target word. If the window size is m, the num-

ber of context words used to predict the target word is 2m (Mikolov et al.,

2013a,b).

For example, if the context window size is 2, information about the target

word and the context words for the sentence (6) is represented as in Table

3.6.

Table 3.6: Target word and context words in CBOW

Target word Encoding Context words
pang_07/NNG [1,0,0,0,0] [0,1,0,0,0],[0,0,1,0,0]
-(u)lo/JKB [0,1,0,0,0] [1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]
ka/VV [0,0,1,0,0] [1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]
n-ta/EF [0,0,0,1,0] [0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]
./SF [0,0,0,0,1] [0,0,1,0,0],[0,0,0,1,0]

53



3.3. PREDICTION-BASED MODEL

In this table, twowords (-(u)lo/JKB, ka/VV) are used to predictpang_07/NNG,

and threewords (pang_07/NNG, ka/VV, n-ta/EF) are used to predict -(u)lo/JKB.

Figure 3.3 illustrates the framework of CBOW, which uses three-word infor-

mation (i.e., one context word immediately left of the target word, the other

immediately right) to predict one word.

Figure 3.3: A framework of the CBOW model

Each step of the CBOW workflow is as follows: first, one-hot vector for

context is inputted to the input layer. For example, if the context window size

ism, 2m one-hot vectors are entered into the input, where c is the position of

target word and m is context window size used in the process.

54



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

|V | ∗ 1dim = X(c−m), . . . , X(c−1), X(c+1), . . . , X(c+m)

Second, in the process toward the input layer to the hidden layer, the one-

hot vector used as the input is multiplied with the input word matrix com-

posed of random numbers. Xc±m is the one-hot vector of the surrounding

words in the range of the context window from the target word and V|V |∗N is

the input word matrix which is randomly generated.

Xc±m ∗ V|V |∗N = vc±m

Third, the hidden layer calculates the average of the results of the second

process.

v̂ =
vc−m, . . . , vc+m

2m

Fourth, in the process from the hidden layer to the output layer, the results

of the third process are multiplied with the output word matrix composed of

random numbers.

z = v̂ ∗ UN∗|V |

Fifth, the probability is calculated in the output layer, using the softmax

function to represent the results obtained in the fourth process as probabil-

55



3.3. PREDICTION-BASED MODEL

ities.

ŷ = softmax(z)

The formula for the softmax function is as shown below:

softmax = Pi =
ezi∑k
j=1 e

zj
for i = 1, 2, . . . , k

Suppose the number of classes entered into input is k. The softmax esti-

mates probabilities for each class by entering the total classes. This means

that the sum of the probability values of total classes is one (Mikolov et al.,

2013b).

Finally, an error between the one-hot vector of the target word, y and ŷ ob-

tained from the output layer, is measured by cross-entropy function. In this

process, the cross-entropy function as shown below is used.

cross-entropy = H(P,Q) = −ΣP (x) ∗ log Q(x)

For example, suppose the correct answer (P )with twocategories is
[
1 0

]
.

Q is calculated to approximate P , and if the calculation result is
[
0 1

]
, the

loss becomes an infinite value as shown below:

P (x) ∗ log Q(x) = −
[
1 0

]log 0
log 1

 = −(−∞+ 0) = ∞

56



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

If the calculated Q matches the correct P , the loss is zero as shown be-

low:

P (x) ∗ log Q(x) = −
[
1 0

]log 1
log 0

 = −(−0 + 0) = 0

If the cross-entropy value between the ŷ calculated in the CBOW model

and the one-hot vector value of the target word is 0, then the value of v̂ in the

hidden layer is used as the dimension value of target word. However, if the

cross-entropy value is not zero, the CBOW model repeats back propagation

to update the V|V |∗N and UN∗|V |.

To illustrate the entire workflow with concrete values, suppose the same

corpus involving the postposition -(u)lo as a function of DIR (Direction) in (6)

is revisited, as in (7).

(7) pang_07/NNG -(u)lo/JKB ka/VV n-ta/EF ./SF

pang-ulo

room-DIR

ka-n-ta.

go-PRS-DECL

‘(I am) going to the room.’

Suppose thatwepredict -(u)lo/JKB,
[
0 1 0 0 0

]
using theword pang_07/NNG,[

1 0 0 0 0

]
from the given sentence. Then the X of the context word

entered in the input layer should be
[
1 0 0 0 0

]
, and the Y in the output

57



3.3. PREDICTION-BASED MODEL

layer should be
[
0 1 0 0 0

]
. If the input word matrix is



1 0

0 1

1 1

0 1

1 1


, through

the process of going from the input layer to the hidden layer, then the esti-

mated vc in the hidden layer is as follows:

vc =

[
1 0 0 0 0

]



1 0

0 1

1 1

0 1

1 1


=

[
1 0

]

After that, if the output word matrix is

0 3 0 0 0

1 1 2 1 1

, moving from the

hidden layer to the output layer, then the estimated z is obtained as follows:

z =

[
1 0

]
∗

0 3 0 0 0

1 1 2 1 1

 =

[
0 3 0 0 0

]

The z is then expressed as probabilities using the softmax formula and

the cross-entropy value between Y and Ŷ is calculated to see whether the

58



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

value is zero or not.

Ŷ = softmax(z) =

[
0 1 0 0 0

]

−P (x) ∗ log Q(x) = −
[
0 1 0 0 0

]



log 0

log 1

log 0

log 0

log 0


= −(0 + 0 + 0 + 0 + 0) = 0

If the calculated cross-entropy value is 0, then the vc of the hidden layer

is used as a two-dimensional vector for target word, -(u)lo/JKB.

The prediction-based models such as CBOW and SGNS, unlike count-

basedmodels, can embedwordswithout information on howoften thewords

appear.

3.3.3 Skip-Gram and Negative Sampling

In contrast to CBOW, Skip-gram is an algorithm that predicts context words

using the target word. However, similar to CBOW, Skip-gram uses one-hot

vector as input and output. The framework (using one word to predict three

words) is shown in Figure 3.4.

59



3.3. PREDICTION-BASED MODEL

Figure 3.4: A framework of the Skip-gram model

Each step of the Skip-gram workflow is as follows: first, one-hot vector

for target word is inputted to the input layer.

|V | ∗ 1dim = X

Second, in the process from the input layer to the hidden layer, the input

of the target word is multiplied with the input word matrix composed of ran-

dom numbers.

Xc ∗ V|V |∗N = vc

60



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

Third, moving from the hidden layer to the output layer, the results of the

second process aremultiplied with the output wordmatrix composed of ran-

dom numbers.

z = vc ∗ UN∗|V |

Forth, the probability is calculated in the output layer using the softmax

function.

Ŷ = softmax(z)

Finally, an error is measured between Y (the one-hot vector of the con-

text words), and Ŷ (obtained from the output layer) by using cross-entropy.

In order to further improve the performance of the Skip-grammodel, Mikolov

et al. (2013a) proposed a negative sampling as in 3.3.

log σ(v
′

wo
TvwI) +

k∑
i=1

Ewi∼pn(w)[log σ(−v
′

wi
TvwI)] (3.3)

Negative sampling involves calculating probabilities by randomly select-

ing five to twenty words from the total words as negative samples to reduce

the number of calculations required by the softmax function. Then, the sam-

ples are combined with the context words to create a set of total words. The

61



3.3. PREDICTION-BASED MODEL

number of total words is then used in the softmax calculation process to ob-

tain probability of Ŷ .

Word2Vec includes two techniques (i.e. CBOW and Skip-gram), which

has brought forth questions about which technique is better for word em-

bedding. Some studies compared the performance of the two algorithms

for Word2Vec (e.g., Mikolov et al., 2013a, Pennington et al., 2014, Yogatama

et al., 2014).Mikolov et al. (2013a) introducedWord2Vec for the first time and

compared the performance of the CBOW and Skip-gram algorithms. They

found that in semantic tasks, Skip-gram and CBOW reached an accuracy of

0.55 and 0.24, respectively. In contrast, in syntactic tasks, themodels yielded

similar rates of accuracy (0.59 for Skip-gram and 0.64 for CBOW). This sug-

gests that the performance of the Skip-gram and the CBOW techniques is

contingent on task types.

Yogatama et al. (2014) did a similar comparison, together with existing

word embedding models such as the Principal Component Analysis and Re-

current Neural Network. They found that in semantic tasks, the CBOW tech-

nique showed an accuracy of 0.12 and the Skip-gram technique showed an

accuracy of 0.39, and in syntactic tasks, the CBOW technique showed an ac-

curacy of 0.52 and the Skip-gram technique showed an accuracy of 0.54.

Overall, the Skip-gram technique showed a higher accuracy rate than the

CBOW technique, but once again, the performance was dependent on the

task type. Inspired by these studies, a recent trend of research on prediction-

based word embedding is to employ a combination of Skip-gram and nega-

tive sampling as a prediction-based model. This dissertation also follows

this trend by adopting Skip-gram as a specific method of the prediction-

based model for word embedding.

62



CHAPTER 3. PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION

3.4 Summary of the Chapter

TheDSMsare divided into two types: count-basedmodel (e.g., Singular Value

Decomposition (SVD), Eckart and Young, 1936) and prediction-based model

(e.g., Skip-Gram and Negative Sampling (SGNS), Mikolov et al., 2013a).

The count-basedmodel embedded each word by counting the number of

times they appear. As a fundamental task for this model, a word-word co-

occurrence matrix is used to see the relationship between words. However,

the number of occurrences may not present the correct relationship of two

words. To remedy this, Positive PointwiseMutual Information (PPMI; Church

and Hanks, 1989) is generally used, by weighing the association between

two words in search of the co-occurrence of these words in a corpus (Ju-

rafsky and Martin, 2019). However, there still remain the issue that when the

corpus size increased, the dimensions of the matrix also increased. Hence,

SVD (SVD; Eckart and Young, 1936) is used to reduce the dimensions of a co-

occurrencematrix whilemaintaining the information of thematrix (e.g., Bulli-

naria and Levy, 2012, Levy and Goldberg, 2014). Furthermore, a method com-

bining PPMI with SVD has recently been frequently used as a count-based

model.

The prediction-based model embedded each word based on probability

information about the meaning between words. To represent each word in-

dependently, one-hot encoding method is used, using 0 and 1 to represent a

unique index for each word (Ammar et al., 2016).

As a representative of themodel, there isWord2Vecwhich includesCBOW

and SGNS. Since Word2Vec contains two different algorithms, many com-

parative studies have been conducted on the two (e.g., Mikolov et al., 2013a,

63



3.4. SUMMARY OF THE CHAPTER

Pennington et al., 2014, Yogatama et al., 2014). As a result, many have re-

ported that SGNS performs better than CBOW.

Based on the previous studies that employ PPMI with SVD as a count-

based model and SGNS as a prediction-based model, I also implement two

DSMsmodels: a combination of PPMI and SVD (Turney and Pantel, 2010) as

a count-basedmodel, and SGNS (Mikolov et al., 2013a) as a prediction-based

model, with the manipulation of context window size from one to 10.

64



Chapter 4
Methodological set-up: PPMI-SVD and

SGNS

Improving the accuracy of classifying the functions of postpositions is un-

doubtedly important, however, revealing the precise environments around

postpositions for particular classification is also crucial. In particular reveal-

ing them through the window of a cluster of interlinked words because it

shows how polysemy resolution is situated in that cluster. In this regard,

DSMsdrawattention to the computational understanding of human language

(see Chapter 3). In order to identify the changes of relationships between

postpositions and their co-occurring words, I implement a combination of

PPMI and SVD Turney and Pantel (2010) as a representative model of the

count-based account, and SGNS Mikolov et al. (2013a) as a representative

model of the prediction-based account, withmanipulation of contextwindow

from one to 10.

This chapter outlines the methodological details of this task, with three

specific research questions in mind.

65



4.1. CORPUS

• Research question 1: How does the number of functions a postposition

has, affect classification performance for each word-level embedding

model?

• Research question 2:What is the role of the context window in the clas-

sification performance of each word-level embedding model?

• Research question 3: How does the cluster of postpositions and their

co-occurring words change as the environments of word-level embed-

ding change?

4.1 Corpus

4.1.1 Sejong corpus: General description

I use the representative corpus data in Korean known as the Sejong corpus

(Kim et al., 2006, combined with the detailed dictionary). The corpus was

created by the 21st Century Sejong Project, a ten-year-long project that was

launched in 1998. This project aimed to provide large-scale Korean corpora

of both written and spoken genres (Shin, 2008). It is composed of six sub-

parts: (i) creation of primary/special corpora, (ii) creation of electronic dic-

tionaries of predicates and their case frames that describe semantic rela-

tionships between words in a sentence, (iii) distribution of computer-aided

information about Korean, (iv) standardization of technical terminologies, (v)

support for non-standard characters, and (vi) management of information

about Korean (Shin, 2008).

Among the sub-parts described above, this study used the primary cor-

66



CHAPTER 4. METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS

pus to make a list of the functions of the postpositions and the electronic

dictionary to obtain the function of each postposition. The primary corpus in-

cludes datasetswith different types of annotations: a rawcorpus (63,899,412

ecel1), a grammatically tagged corpus (15,226,186 ecel), a parsed corpus

(570,064 ecel), and a semantically tagged corpus (10,132,348 ecel). For the

task at hand, I used the semantically tagged corpus in particular. As shown

in Figure 4.1, this corpus does not directly provide information about the

intended functions of postpositions. Instead, if a noun used in a sentence

has multiple meanings, its correct meaning is tagged with an index (e.g.,

sacin_07/NNG). This type of information can reduce the ambiguity that may

happen in model learning.

1An ecel is defined as a white-space-based unit serving as the minimal unit of sentential
components.

67



4.1. CORPUS

Figure 4.1: Example of the semantically tagged corpus

The electronic dictionary (written in an XML format) describes a frame,

which shows the semantic relationships between words in a sentence. It is

composed of two types of sub-dictionaries. One is a basic dictionary with 18

grammatical categories, 13 small dictionaries about non-grammatical cate-

gories such as idiomatic expression and specialwords, and 461,163 specifics

describing information of individual words such as part of speech, meaning,

and brief examples of when it comes to use. The other is an additional dic-

tionary, which is an elaboration of parts of the basic dictionary, with 155,866

more specifics added. The dictionary provides case frames as combinations

of postpositions and predicates (Figure 4.2).

68



CHAPTER 4. METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS

Figure 4.2: Example of a case frame in the Sejong electronic dictionary

TheSejong electronic dictionary consists of 31,093 frames involving 15,181

verbs and 8,115 frames involving 4,398 adjectives (e.g., Seong, 2007). Of

these frames, 2,384 are frames with -ey (2,115 verbs; 269 adjectives), 766

are frame with -eyse (752 verbs; 14 adjectives), and 1,991 are frames with

-(u)lo (1,782 verbs; 109 adjectives).

4.1.2 Composition of a corpus with respect to the three ad-

verbial postpositions

For exploratory purposes, I analyzed the corpus in order to see how many

sentences contained the three target postpositions -ey, -eyse, and -(u)lo.

Through Java environment, I confirmed the sentences one by one and sort

out the sentences containing these postpositions. The results showed a to-

tal of 698,002 sentences with the postpositions (349,118 instances of -ey,

69



4.1. CORPUS

121,532 instances of -eyse, and 227,352 instances of -(u)lo). These postpo-

sitions (i.e., -ey, -eyse, and -(u)lo) were ranked as the most frequent ones

used out of adverbial postpositions in the corpus. Regarding the functions

of these postpositions (see Section 2.1), the number of functions diverges

according to the postposition types, as shown in Table 4.1.

Table 4.1: By-function frequency list of -ey, -eyse, and -(u)lo

-ey -eyse -(u)lo
Function Frequency Function Frequency Function Frequency
LOC 1,328 SRC 487 FNS 857
GOL 665 LOC 197 INS 561
EFF 150 DIR 324
CRT 124 EFF 38
THM 58 CRT 22
INS 17 LOC 9
AGT 13
FNS 11

-ey has 8 functions (see Section 2.1.1), with LOC and having most occur-

rences. -eyse has only two functions, SRC and LOC (see Section 2.1.2). -(u)lo

has six functions (see Section 2.1.3), with the top three functions (FNS, INS,

and DIR) having more than 80 per cent of the occurrences.

70



CHAPTER 4. METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS

4.1.3 Creation of a hand-coded corpus

To see the relationship between postpositions and their surroundingwords, I

needed a corpuswith the intended functions of postpositions tagged in each

sentence. However, the current corpus data does not code the functions of

postpositions directly. Therefore, I annotated the corpus manually with the

help of three native speakers of Korean. Among the three, onewas an instruc-

tor who teaches Korean to children and the other two were Ph.D. candidates

in linguistics. They managed all the details of the corpus annotation, from

the development of the annotation manual to the manual annotation of the

intended function of postposition in each sentence.

Regarding the process of creating a hand-coded corpus, I extracted sen-

tences having only one postposition and predicate. Although this manipu-

lation omits many sentences already extracted from the original corpus, it

is beneficial for controlling any additional confounding factors which could

have interfered with the performance of my model. If a sentence contains

more than one postposition, including the three postpositions that I focus

on, they become less independent of each other. This means the model per-

formance of each postposition will be affected by each other. This reduction

process results in a total of 27,720 sentences, with 14,096 sentences for -ey,

5,078 sentences for -eyse, and 8,546 sentences for -(u)lo. I then extracted

5,000 sentences randomly for each postposition to keep an equal number

of sentences for each one.

The final corpus data were then hand-coded by the three native speakers

of Korean, following the functions of the individual postpositions. The inter-

rater reliability of the data wasmeasured with the Fleiss’s Kappa (Landis and

71



4.1. CORPUS

Koch, 1977). The results were a score of 0.948 for -ey, 0.928 for -eyse, and

0.947 for -(u)lo, which are considered ‘almost perfect’ according to the Kappa

scale. I decided to exclude sentences that caused disagreement among the

human annotators (i.e., 285 sentences for -ey, 147 sentences for -eyse, and

292 sentences for -(u)lo). After which, I obtained the final corpus data for

each postposition. This yield 4,715 sentences for -ey, 4,853 sentences for

-eyse, and 4,708 sentences for -(u)lo. Table 4.2 presents the detailed by-

function frequency list of the three postposition types2.

Table 4.2: By-function frequency list of -ey, -eyse, and -(u)lo in cross-validated
corpus

-ey -eyse -(u)lo
Function Frequency Function Frequency Function Frequency
LOC 1,780 LOC 4,206 FNS 1,681
CRT 1,516 SRC 647 DIR 1,449
THM 448 INS 739
GOL 441 CRT 593
FNS 216 LOC 158
EFF 198 EFF 88
INS 69
AGT 47
Total 4,715 Total 4,853 Total 4,708

2The hand-coded corpus is available at: https://github.com/seongmin-
mun/Corpora/tree/master/APIK

72

https://github.com/seongmin-mun/Corpora/tree/master/APIK
https://github.com/seongmin-mun/Corpora/tree/master/APIK


CHAPTER 4. METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS

In this hand-coded corpus, the order of frequency of the functions for

each postposition differed from the Sejong dictionary. For example, LOC,

GOL, and EFF were the most frequent functions of -ey in the Sejong dictio-

nary, but LOC, CRT, and THM were used the most in the hand-coded corpus.

For -eyse, the LOC occupied a larger proportion than the SRC. For -(u)lo, the

functions occupied in the same order of FNS, INS, and DIR as in the Sejong

dictionary. And although the same functions were found to bemost frequent

in the hand-coded corpus, they occurred in a different order: FNS, DIR, and

INS. These results do not pose a problem in conducting this dissertation,

but this means that the functions used most frequently in the dictionary are

different from the ones in the actual corpus.

4.1.4 Training and test sets

Every instance of the hand-coded corpus was lemmatized and POS-tagged

before the actual data processing stage. Using the corpus for this task re-

quires the functions of each postposition to be marked overtly with the form

of each postposition (e.g., 에/JKB_CRT). Therefore, I tagged the functions

of the postpositions manually. Figure 4.3 illustrates the format of instances

used for model training and testing.

73



4.1. CORPUS

Figure 4.3: Example sentences used in model training (-ey, CRT)

The data for training and testing should be independent. Thus, I made the

model divide the corpus into two sub-sets, one with 90 percent of the corpus

for the training and the remaining 10 percent for the testing. In order to ob-

tain a normalized result fromeachmodel, I employ the k-fold cross-validation

technique (Salton, 1971), which evaluates the model by partitioning the origi-

nal corpus into k equal size subsamples. Of the k subsamples, a single sub-

sample is retained as the test set, and the remaining k-1 subsamples are

used as training sets. Another commonly used way of sampling is random

sampling, which is to extract the training and test sets randomly with several

iterations to obtain a normalized estimate. However, fully random sampling

has the risk that the sentences used as training sets will remain as training

sets, and likewise, test sets will remain as test sets only. The k-fold cross-

validation technique has the advantage that no overlap occurs between the

training and test sets, while all instances are still used for both training and

testing. I set the value of k as 10 and repeat the cross-validation 10 times,

with each of the 10 subsamples use exactly once as the test set (Figure 4.4).

74



CHAPTER 4. METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS

Figure 4.4: The process of the k-fold cross-validation technique

4.2 Model training

Model training consists of two parts: (i) word-level embeddings to check

the relationship between words, and (ii) similarity-based estimation (Dagan

et al., 1995) to determine the intended functions of the postpositions used

in the test set.

4.2.1 Word-level embedding: PPMI-SVD and SGNS

I use a combination of PPMI and SVD (Turney and Pantel, 2010) as a count-

based model and SGNS (Mikolov et al., 2013a) as a prediction-based model

as word-level embeddings to see how clusters between postpositions and

their co-occurring words change. In addition, I manipulate the context win-

dow size from one to ten. For this, an algorithm for word-level embedding

was developed (see Appendix A.1 for a comprehensive view of the work-

75



4.2. MODEL TRAINING

flow). The general flow is as follows: first, the model creates a list of words

that exist in the training sets obtained from the 10-fold cross-validation tech-

nique. Second, based on the word list, a word-word co-occurrence matrix

(for the count-based model) and one-hot vectors (for the prediction-based

model) are generated. Third, themodel produces word-level embeddings us-

ing PPMI-SVD and SGNS.

The algorithm was developed in a Python environment. Linalg from the

scipy package was used for the PPMI-SVD model training. Word2Vec, from

the gensim package, was used for the SGNS model training. The word-level

embeddings generated by each model had 500 dimensions, each of which

was stored in a database. A total of 600 embeddings were made through

this process (2 models * 3 postpositions * 10 folds * 10 window sizes).

4.2.2 Similarity-based estimation

Based on the word-level embeddings generated by the first algorithm, the

second algorithm was developed to classify the intended function of post-

positions used in the test set. This was done by calculating similarity-based

estimation (Dagan et al., 1995); classifying the meaning of the target word

that was never used in the training sets by using calculated similarity scores

between words. This is a classic method considering the recent develop-

ment of word embedding research (e.g., Auger and Barrière, 2008, Hazem

and Morin, 2013, Kazama et al., 2010, Zhitomirsky-Geffet and Dagan, 2009),

but it enhances classification performance through similarity scores indicat-

ing that the relationship between words are used to determine the meaning

of the target word (Zhitomirsky-Geffet and Dagan, 2009). It can also be used

76



CHAPTER 4. METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS

to estimate that the target word even has more than one meaning.

A similarity-based estimation is proposed by Dagan et al. (1995) for the

first time. They discussed how to estimate themeaning of a target word that

does not occur in the training data. They proposed amethod by obtaining in-

formation about the words around the target word in order to estimate the

intended meaning of target word. Figure 4.5 shows how they did so.

Figure 4.5: The similarity-based estimation as an average on similar pairs
(Dagan et al., 1995, p. 167)

Suppose that we have a relation from the training set involving the words

(chapter, introduction, book and section), one from the test set that contains

three of the same words (introduction, book and section), and one word (de-

scribes) that does not occur in the training set. In this situation, the task is to

calculate the similarity scores between describes and chapter. The method

proposed by Dagan et al. (1995) calculates the average score between the

target word (describes) and the three words (introduction, book and section)

that appear in test set and the training set. The average of similarity score

(6.41) is used as the estimated similarity score of the two words (chapter

and describes).

The postpositions inmy training sets are tagged with their intended func-

tions in a sentence (e.g., 에/JKB_CRT), but the ones in the test set are not

(e.g.,에/JKB). I aim to determine the intended function of the postpositions

77



4.2. MODEL TRAINING

in the test set based on the cluster obtained from word-level embeddings

from the training set. From this point of view, the similarity-based estima-

tion is consistent with the aims of this dissertation, so I use it as the main

algorithm of the classification model.

4.2.3 Classificationmodel adapted from similarity-based es-

timation

To apply a similarity-based estimation to my algorithm, I made the training

and test sets differently. This is because the postpositions used in the test

set should be recognized as ones whose function is unknown so that they

can be classified into designated functions by the model trained. This is il-

lustrated in Figure 4.6. The postpositions in the training set are tagged with

the intended functions while the one in the test set is not.

Figure 4.6: The training sets and test set used in this dissertation (-eyse)

The classification algorithm (Appendix A.2) works as follows3: first, the

algorithm loads a total of 600 word-level embeddings (2 models * 3 postpo-
3The entire code for the word-level embedding models that I developed are available

at: https://github.com/seongmin-mun/PhD_dissertation/tree/main/Python/PPMI-SVD and
https://github.com/seongmin-mun/PhD_dissertation/tree/main/Python/SGNS

78

https://github.com/seongmin-mun/PhD_dissertation/tree/main/Python/PPMI-SVD
https://github.com/seongmin-mun/PhD_dissertation/tree/main/Python/SGNS


CHAPTER 4. METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS

sitions * 10 folds * 10 window sizes) generated by the first algorithm and cal-

culates the similarity between the postpositions and the surrounding words.

Second, the algorithm loads a test set andmakes the list of words in it. Third,

the algorithm compares the list of words used in the test set to the one used

in the training set and generates a list of words that are shared with each

other. Fourth, the algorithm calculates the average score between each func-

tion of the postpositions and a list of words that are shared with each other.

Finally, the algorithm determines the function of the postpositions used in

test set with the highest average.

For an illustration, suppose a relationship basedon cosine similarity scores

from the training set as in Figure 4.7.

Figure 4.7: The classification model process adapted from Dagan et al.
(1993): a case of -(u)lo

79



4.2. MODEL TRAINING

The similarity-based relationship contains the same form of -(u)lo with

three different functions and shares three words (-ka/VV, -cacenke/NNG, -

taycang/NNG), but the functions have different similarity scores with the

three words. The issue here is how to determine the function of this post-

position when the test set involves the same postposition with an unspeci-

fied function and the same three words used in the training set. To recognize

the intended function of -(u)lo, the classification model calculates average

scores from each of the three different -(u)lo (-(u)lo_INS: 0.533, -(u)lo_FNS:

0.566, -(u)lo_DIR: 0.64). Basedon the score, themodel classifies the intended

function of -(u)lo in the test set as directional. Through similarity-based esti-

mations, the relationship between word-level embeddings can be used with

DSMs to determine the intended function of postposition in the test set that

does not occur in the training set.

80



CHAPTER 4. METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS

4.3 Visualization: PostEmbedding

The relationship between words embedded in multiple dimensions through

DSMs is difficult to identify at first glance because it is composed of a com-

plexmatrix. However, reducing themulti-dimensional embeddingmatrix into

a two-dimension one and visualizing it makes the identification of the re-

lation more recognizable (Mun and Lee, 2016). For example, Hilpert (2016)

performed a diachronic corpus-based study of the English modal auxiliary

may, focusing on changes in its collocational preferences over the past 200

years. He visualized the relationship of the embedded words by reducing

the dimensions to two and the changes in the relation between words over

time through density maps. Based on the visualization results, he was able

to easily and accurately identify the relation between words that varied over

time. Desagulier (2014) selected four English adverbs, rather, quite, pretty,

and fairly, and conducted a study to identify the conceptual contents they

presumably share. In his work, he used two-dimensional visualizations and

interpreted the relationship of words located around the four adverbs at a

glance and accurately.

By using visualization techniques, at least three types of information are

identified easily: (i) the degree of similarity across words through their loca-

tional distance, (ii) changes of word relations according to change of envi-

ronments, and (iii) designated word properties by way of colors and sizes.

For these reasons, I also use visualization to express and interpret the results

in this dissertation.

81



4.3. VISUALIZATION: POSTEMBEDDING

4.3.1 t-SNE and the cosine similarity

The visualization system aims to see the relationship between the postpo-

sitions and their surrounding words in the hand-coded corpora. Rather than

employing the 600 word-level embeddings above (2 models * 3 postposi-

tions * 10 folds * 10 window sizes), 60 word-level embeddings per postposi-

tion were used (2 models * 3 postpositions * 10 window sizes). In order to

express the word-level embeddings of DSMs involving themulti-dimensional

matrix into the two-dimensional visualization, dimension reduction techniques

should be employed.

Various techniques have been suggested such as the t-distributedStochas-

tic Neighbor Embedding (t-SNE;Maaten andHinton, 2008), Principal Compo-

nents Analysis (PCA; Hotelling, 1933) and Classical Multidimensional Scal-

ing (MDS; Torgerson, 1952). These techniques that reduce high-level dimen-

sions to low-level dimensions differ from each other according to what kind

of data points they focused on during the reduction process (Maaten and

Hinton, 2008). For instance, conventional dimensional reduction techniques

such as PCA andMDS are linear techniques that concentrate onmaintaining

low-dimensional representations of similar data points, thus performed well

to express similar data points (e.g., Hotelling, 1933, Torgerson, 1952). How-

ever, they have a disadvantage wherein they lose the information of dissim-

ilar data points because they do not focus on maintaining low-dimensional

representations of dissimilar data points. In contrast, the t-SNE technique

considers whether variables are (dis-)similar simultaneously, and thus hav-

ing the advantage over the other techniques due to its higher accuracy (Maaten

and Hinton, 2008).

82



CHAPTER 4. METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS

For example, Figure 4.8 showswhether t-SNE takes into account both the

similar anddissimilar data points in the process of reducing a two-dimensional

plot to a one-dimensional plot. (a) represents the process where a two-

dimensional plot is transformed into a one-dimensional plot relative to the x-

axis. This way produces one group of threewords (pang_07/NNG, -(u)lo/JKB,

ka/VV) and the another of two words (ta/EF, ./SF). (b) shows the process

where the same two-dimensional plot is transformed into a one-dimensional

plot relative to the y-axis. This treatment generates one group of three words

(ka/VV, ta/EF, ./SF) and another groupof twowords (pang_07/NNG, -(u)lo/JKB).

However, these results do not seem to be correct intuitively because the two-

dimensional plot produces three groups of words by similarity: one group of

two words (pang_07/NNG, -(u)lo/JKB), another of two words (ta/EF, ./SF),

and one of one word (ka/VV). With this in mind, (c), using t-SNE, represents

proper relationships between the words in the plot. Here, the words that

are close to each other in a two-dimensional plot are also close in the one-

dimensional plot, and likewise the words that are far remain far. This is be-

cause t-SNE used both dissimilar and similar data points simultaneously

(Maaten and Hinton, 2008). Considering the accuracy of this method in rep-

resenting word relations, I employ t-SNE for the task of dimension reduction.

83



4.3. VISUALIZATION: POSTEMBEDDING

Figure 4.8: Reducing a two-dimensional plot to a one-dimensional plot using
the t-SNE

84



CHAPTER 4. METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS

After reducing the 500-dimensional word-level embeddings to two-

dimension using t-SNE, I visualize the two-dimensional values as (X, Y) co-

ordinate values. By visualizing the reduced results in the two dimensions

the relation between a postposition and its co-occurring words can easily be

seen. Additionally, the cosine similarity formula as formalized in (4.1) calcu-

lates the similarity score between a postposition and its co-occurring words

to see how similar they are.

Similarity = cos(θ) =
A ∗B

∥A∥∥B∥
=

∑n
i−1Ai ∗Bi√∑n

i=1(Ai)2 ∗
√∑n

i=1(Bi)2
(4.1)

By using the cosine similarity formula, which words are related to each

function of the postpositions can be seen. In this dissertation, I design and

develop a visualization system to better interpret the changes of the relation-

ship between a postposition and its co-occurring words intuitively.

4.3.2 Tasks and design objectives

Visualization can support evaluating result by exploring data and drawing

meaningful interpretations from the data efficiently (Mun et al., 2017). Hence,

I design my visualization system by specifying tasks and objectives as fol-

lows:

85



4.3. VISUALIZATION: POSTEMBEDDING

Task 1: Visually represent different clusters using the embeddingmodels,

the context window sizes, and the postposition types.

Design Objective: Design options for users to select the embeddingmod-

els, the context window sizes, and the postposition types.

Task 2: Identify the real corpus data used for training and the details of

each word in the cluster (e.g., part-of-speech, frequency of occurrence, word

meaning).

Design Objective: Add separate pop-up views to represent the aforemen-

tioned information about the cluster when the user moves the cursor over

the circle (i.e., each word).

Task 3: Identify the relation between the functions of postpositions and

the nearest words.

Design Objective: Add the similarity scores calculated by the cosine sim-

ilarity formula in the system so that users can more accurately identify the

similarity between the postposition and its co-occurring words.

4.3.3 System development

Considering the tasks and design objectives, I developed a visualization sys-

tem (available at: PostEmbedding) that helps to interpret the clusters be-

tween the postpositions and their surroundingwords intuitively4. The system

was developed through Java, JavaScript, HTML, and CSS environments. The

development process of the visualization consists of three parts: (i) data pro-

4More details of PostEmbedding is available at: https://github.com/seongmin-
mun/VisualSystem/tree/master/Major/PostEmbedding

86

https://seongmin-mun.github.io/VisualSystem/Major/PostEmbedding/index.html
https://github.com/seongmin-mun/VisualSystem/tree/master/Major/PostEmbedding
https://github.com/seongmin-mun/VisualSystem/tree/master/Major/PostEmbedding


CHAPTER 4. METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS

cessing, (ii) front-end, and (iii) back-end.

For the data processing, I transformed the obtained t-SNE outcomes in

CSV format which is the delimited text file using the comma to separate val-

ues, into JSON format (i.e, the standard text-based format for representing

structured data based on JavaScript object syntax). In this part, I generated

three types of data through Java programming while adapting JSONObject

and JSONArray. The first data contains t-SNE outcomes that I obtained from

the similarity-based estimation algorithm. This data is connected with the

distributional semantic map of the visualization system to show the clus-

ters between word embeddings (see Figure 4.9 (b)). The second data in-

cludes raw sentences involving each function of postpositions. This data

is connected with the concordance table view (see Figure 4.9 (c)). The third

data contains the similarity information between each postposition and co-

occurring words. This data is used in the Force-directed graph view and the

Nearest words view (see Figure 4.9 (d)). After the data processing, these

JSON data were stored in the database which is connected with the visual-

ization system.

In the front-end part of the visualization, I used Bootstrap in order to de-

sign interface components of the visualization system. Moreover, I usedMe-

dia queries from CSS. This makes the visualization system modify the size

of the interface automatically depending on a device’s general type that is

currently used by the user.

Finally, in the back-end part of the visualization, I used D3.js to create

interactive visualization in the browser. By using D3.js, I manipulated the el-

ements of a webpage such as SVG, or Canvas elements according to the

contents of the data set. Moreover, I used jQuery in order to make several

87



4.3. VISUALIZATION: POSTEMBEDDING

functions through JavaScript more easily.

4.3.4 Interface of visualization system

For the interface of the visualization system, I propose three views to effec-

tively explore the relationships between each postposition and co-occurring

words.

Figure 4.9: Interface of visualization system (1) and the main view of the
system (2)

88



CHAPTER 4. METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS

In Figure 4.9, (1) shows the overall composition of the developed visual-

ization system. (a) provides menus to select the postpositions, the models,

and the window sizes to check word-level embeddings results. It also allows

users to adjust the color and size of the circle representing each word, to

turn on and off the text above the circle, and to highlight the circle according

to the selected parts of speeches. (b) shows a distributional semantic map

of the word-level embeddings reduced to two dimensions using t-SNE. (c)

shows the hand-coded corpus actually used in the selected postposition for

each function. (d) allows users to choose particular functions of the post-

positions and check the information about surrounding words relative to the

function. The developed system shows changes of the relationship between

one word and the co-occurring words using the changes of clusters that are

generated by combinations of these words.

4.4 Summary of the Chapter

I made a hand-coded corpus based on the Sejong corpus (Kim et al., 2006,

combinedwith the detailed dictionary). Because it does not indicate the func-

tions of postpositions directly onto the postpositions themselves. After an-

notating the corpus manually, I obtained the total 4,715 sentences for -ey,

4,853 sentences for -eyse, and 4,708 sentences for -(u)lo. The hand-coded

corpus of each postposition were used in the model training process.

Model training was divided into two steps. The first step was the word-

level embeddings to check the relationship of words. For this, I used a com-

bination of PPMI and SVD (Turney and Pantel, 2010) as a count-basedmodel

89



4.4. SUMMARY OF THE CHAPTER

and SGNS (Mikolov et al., 2013a) as a prediction-based model, with manipu-

lation of context window from one to ten. The 10-fold cross-validation tech-

nique (Salton, 1971) was used to evaluate the model by dividing the original

corpus into 10 equal size subsamples. Through this step, I obtained 600 em-

beddings (2 models * 3 postpositions * 10 folds * 10 window sizes) to see

the clusters between postpositions and their co-occurring words.

The second step was a similarity-based estimation (Dagan et al., 1995)

to make a classification model based on word-level embeddings. In order to

adapt this concept, the training set and the test set were revised differently.

The training set was tagged with the intended function of the postpositions

(e.g.,에/JKB_CRT) and the testing set was not (e.g.,에/JKB). I designed an

algorithm for the classification model adapted from the similarity-based es-

timation which used the relationship between postposition and co-occurring

words.

After training the model, I made a visualization system to interpret the

relationship for each word-level embedding easily. The resulting system has

several options to use and can identify each word-level embedding reduced

as a two-dimensional plot using t-SNE. It also shows the user more details

of each word in the word-level embeddings.

In conclusion, I made the word-level embeddings by employing PPMI-

SVD and SGNS. Then, based on these embeddings, I developed a classifica-

tion model by using the concept of similarity-based estimation. I then devel-

oped a visualization system to see the word-level embeddings interactively

to check the changes of the clusters between each function of postpositions

and the co-occurring words.

90



Chapter 5
Results: word-level embeddings

This chapter provides results of the classification models that I developed,

starting from my hypothesis on the research questions (see Chapter 4) to

by-model and by-postposition accuracy levels of each model.

• Research question 1: How does the number of functions a postposition

has affect classification performance for each word-level embedding

model?

• Research question 2:What is the role of the context window in the clas-

sification performance of each word-level embedding model?

• Research question 3: How does the cluster of postpositions and their

co-occurring words change as the environments of word-level embed-

ding change?

5.1 Hypotheses

Hypotheses were made according to the three research questions regarding

the accuracy levels of my classification models and the changes of clusters

91



5.1. HYPOTHESES

involving the three Korean adverbial postpositions (-ey, -eyse, and -(u)lo) and

their surrounding words.

• Hypothesis 1: The accuracy of the classification should be inversely

proportionate to the number of functions of a postposition.

Co-existence of multiple (and related) functions of one form (i.e., poly-

semy) involving a postposition renders the recognition and use of the post-

position ambiguous (e.g., Choo and Kwak, 2008). Given this fact, I predicted

that the more functions a postposition has, the lower the accuracy the clas-

sification models would demonstrate.

• Hypothesis 2: The accuracy of the classification should be higher in

smaller window sizes.

Previous studies have shown the benefits of smaller sizes of context win-

dow in addressing word-level polysemy (e.g., Bullinaria and Levy, 2012, Levy

and Goldberg, 2014). I thus predicted that the classification accuracy of my

models should increase as the context window sizes decrease.

• Hypothesis 3 (on hyperparameters): The clusters and their co-occurring

words should vary depending on the environments of word-level em-

bedding (2 models * 3 postpositions * 10 window sizes).

Previous studies have shown different embedding results depending on

the models, window sizes, or corpus used in their study (e.g., Bullinaria and

Levy, 2007, 2012, Hilpert, 2016, Levy and Goldberg, 2014, Turney and Pantel,

2010). I thus predicted that different clusters and their co-occurring words

should be created according to the different environments used by manipu-

lating model types, postposition types, and window sizes.

92



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

5.2 Model performance: Classification

5.2.1 Overall accuracy by model: PPMI-SVD and SGNS

PPMI-SVD (count-based)

Figure 5.1 presents the classification accuracy of the PPMI-SVD model ad-

justing the context window sizes of each postposition.

Figure 5.1: Classification accuracy by window size for the PPMI-SVD model

It was found that the model performed better for -eyse than the other

two postpositions (-ey and -(u)lo). The reason being that -eyse has only two

functions, SRC and LOC, with the latter occupying more than 85 percent of

the entire corpus. This means that even if all the sentences were classified

93



5.2. MODEL PERFORMANCE: CLASSIFICATION

as LOC, the model accuracy would be higher than 0.85. Statistical analysis

of pairwise comparisons (Table 5.1) further showed that the performance

in -eyse was significantly better than that of the other two postpositions. In

contrast, the accuracy of -ey and -(u)lo were statistically the same.

Table 5.1: Statistical comparison of each postposition (PPMI-SVD): Two-
sample t-test

Comparison |t| p

-ey vs. -eyse 6.080 < .001***
-ey vs. -(u)lo 1.208 .243
-eyse vs. -(u)lo 5.929 < .001***

Note. *** < .001

SGNS (prediction-based)

Similar to the PPMI-SVD model, -eyse outperformed the other two postposi-

tions in the SGNSmodel, as Figure 5.2 shows. This happened because of the

same reason as with the PPMI-SVDmodel (i.e., -eyse has only two functions

with LOC occupying a majority of the total corpus size).

94



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

Figure 5.2: Classification accuracy by window size for the SGNS model

However, unlike the results from thePPMI-SVDmodel, the statistical anal-

ysis of pairwise comparisons (Table 5.2) shows that the accuracy levels of

all the postpositions were different.

Table 5.2: Statistical comparison of each postposition (SGNS): Two-sample
t-test

Comparison |t| p

-ey vs. -eyse 7.835 < .001***
-ey vs. -(u)lo 18.74 < .001***
-eyse vs. -(u)lo 5.203 < .001***

Note. *** < .001

95



5.2. MODEL PERFORMANCE: CLASSIFICATION

5.2.2 Overall accuracy by postpositions: -ey, -eyse, and -(u)lo

-ey

Figure 5.3 shows the classification accuracy of eachmodel for -ey. ThePPMI-

SVD model outperformed the SGNS model, with the classification accuracy

levels being around 0.534 and 0.204, respectively. The mean accuracy lev-

els of the two models were also significantly different from each other (t =

13.39, p < .001 from a two-sample t-test). They showed different tendencies

in terms of context window. The PPMI-SVD model achieved better classifi-

cation accuracy as the context window size increased, whereas the SGNS

model demonstrated low classification accuracy, regardless of context win-

dow sizes.

Figure 5.3: By-window-size accuracy for the two models: -ey

96



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

Model performance of -ey for the PPMI-SVD model varied by the types

of functions, as shown in Figure 5.4 and Table 5.3. The average classifica-

tion accuracy was the highest in LOC (0.602) and the lowest in INS (0.238);

the other functions yielded accuracy ranging from 0.337 to 0.577. The by-

function classification accuracy either increased or decreased. The func-

tionswhose classification accuracy increasedwereCRT, EFF, and LOC. Among

these, LOC showed an accuracy of 0.396 in the window size of one but in-

creased to 0.776 in the window size of ten. The remaining functions, which

saw a decrease, were AGT, FNS, GOL, INS, and THM. Their accuracy tended

to decrease as the window size increased. Although the functions which

saw an increase in accuracy were fewer in number, the overall trend of ac-

curacy change replicated the trend they produced. This was because they

accounted for a larger portion of the entire corpus than the decreasing ones.

97



5.2. MODEL PERFORMANCE: CLASSIFICATION

Figure 5.4: By-function accuracy curve for the PPMI-SVD model: -ey

Note. Abbreviation: AGT = agent; CRT = criterion; EFF = effector; FNS = final
state; GOL = goal; INS = instrument; LOC = location; THM = theme

Table 5.3: By-function accuracy for the PPMI-SVD model: -ey

Window size
Classification accuracy

AGT CRT EFF FNS GOL INS LOC THM
1 0.675 0.551 0.453 0.438 0.555 0.317 0.396 0.430
3 0.625 0.438 0.558 0.448 0.609 0.317 0.380 0.377
5 0.575 0.585 0.584 0.329 0.561 0.250 0.607 0.359
7 0.575 0.588 0.537 0.267 0.489 0.183 0.765 0.298
9 0.475 0.576 0.532 0.257 0.491 0.167 0.780 0.323
10 0.475 0.580 0.532 0.267 0.493 0.183 0.776 0.318

98



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

The classification accuracy of -ey for the SGNSmodel varied by the types

of functions, as presented in Figure 5.5 andTable 5.4. Themeanof classifica-

tion accuracy was the highest in AGT (0.878) and the lowest in CRT (0.089);

the other functions performed accuracy ranging from 0.092 to 0.616. The

rate of change in accuracy by functions for this postposition seemed stable,

except for AGT and INS, with no significant change as the window size in-

creased. INS showed an accuracy of 0.417 in the window size of one, but its

accuracy dropped in the window size of two to 0.100. For AGT, the window

size of one produced an accuracy of 0.675, but as thewindow size increased,

the variation of accuracy was huge, with the highest accuracy at 0.95.

99



5.2. MODEL PERFORMANCE: CLASSIFICATION

Figure 5.5: By-function accuracy curve for the SGNS model: -ey

Note. Abbreviation: AGT = agent; CRT = criterion; EFF = effector; FNS = final
state; GOL = goal; INS = instrument; LOC = location; THM = theme

Table 5.4: By-function accuracy for the SGNS model: -ey

Window size
Classification accuracy

AGT CRT EFF FNS GOL INS LOC THM
1 0.675 0.052 0.458 0.167 0.625 0.417 0.132 0.073
3 0.925 0.145 0.558 0.162 0.693 0.117 0.166 0.102
5 0.925 0.095 0.626 0.233 0.639 0.150 0.196 0.093
7 0.875 0.079 0.637 0.238 0.577 0.150 0.175 0.089
9 0.825 0.071 0.632 0.290 0.564 0.150 0.148 0.086
10 0.900 0.059 0.584 0.281 0.564 0.183 0.154 0.095

100



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

-eyse

Figure 5.6 shows the classification accuracy of each model for -eyse. The

average levels for the PPMI-SVD model and the SGNS model were around

0.773 and 0.693, respectively. As shown in Figure 5.6, the PPMI-SVD model

and the SGNS model demonstrate a similar trend in which the accuracy of

eachmodel increased as the context window size increased. Statistical anal-

ysis of pairwise comparisons showed that there was no difference in the

overall classification accuracy of these twomodels (t = 1.157, p = 0.262 from

a two-sample t-test).

Figure 5.6: By-window-size accuracy for the two models: -eyse

101



5.2. MODEL PERFORMANCE: CLASSIFICATION

Model performance of -eyse for the PPMI-SVD model showed different

outcomes by the types of functions, as shown in Figure 5.7 and Table 5.5.

LOC achieved an accuracy of 0.627 at the window size of one, but increased

up to 0.981 as the context window size increased. In contrast, SRC reached

an accuracy of 0.678 at the window size of one, but decreased to 0.062 as

the context window size increased.

Figure 5.7: By-function accuracy curve for the PPMI-SVD model: -eyse

Note. Abbreviation: LOC = location; SRC = source

102



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

Table 5.5: By-function accuracy for the PPMI-SVD model: -eyse

Window size
Classification accuracy

LOC SRC
1 0.627 0.678
3 0.643 0.680
5 0.876 0.367
7 0.970 0.130
9 0.980 0.062
10 0.977 0.062

Similar to the PPMI-SVD model, LOC performed better than SRC in the

SGNS model. Figure 5.8 and Table 5.6 show that LOC had an accuracy of

0.131 in the window size of one and increased to 0.919 in the window size of

ten. In contrast, SRC reached an accuracy of 0.988 at the window size of one,

but it decreased as the window size increased. The overall trend of accuracy

change was similar to that of LOC. This was because the occurrence of LOC

in the corpus accounted for a larger portion.

103



5.2. MODEL PERFORMANCE: CLASSIFICATION

Figure 5.8: By-function accuracy curve for the SGNS model: -eyse

Note. Abbreviation: LOC = location; SRC = source

Table 5.6: By-function accuracy for the SGNS model: -eyse

Window size
Classification accuracy

LOC SRC
1 0.131 0.988
3 0.578 0.834
5 0.736 0.727
7 0.881 0.491
9 0.918 0.394
10 0.919 0.406

104



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

Overall, the PPMI-SVD and SGNS models showed similar results to each

other, i.e., LOC showed a low accuracy in the smaller window size, but in-

creased as the window size increased. In contrast, the accuracy of SRC

reached high accuracy in the smaller window size, but decreased as the win-

dow size increased. Considering that the smaller windows work better for

syntactic representation and the larger for semantic (e.g., Jurafsky and Mar-

tin, 2019, Levy et al., 1999), LOC may perform more semantically than syn-

tactically, and vice versa for SRC.

-(u)lo

The average classification accuracy levels of -(u)lo for the PPMI-SVD model

and the SGNS model were around 0.567 and 0.368, respectively. As shows

in Figure 5.9, the PPMI-SVD model outperformed the SGNS model, and the

mean accuracy levels of the two models were significantly different from

each other (t = 12.458, p < .001 from a two-sample t-test).

105



5.2. MODEL PERFORMANCE: CLASSIFICATION

Figure 5.9: By-window-size accuracy for the two models: -(u)lo

Model performance of the PPMI-SVD model for -(u)lo varied by the types

of functions, as shown in Figure 5.10 and Table 5.7. The average classi-

fication accuracy was the highest for DIR (0.777) and the lowest for LOC

(0.233); the other functions yielded accuracy ranging from 0.344 to 0.583.

The by-function classification accuracy either increased or decreased. The

functions whose classification accuracy increased were FNS and DIR. The

remaining functions, which decreased, were CRT, EFF, INS, and LOC. This re-

sult may be due to the possibility that the accuracy of the PPMI-SVD model

was affected by the corpus size of each function, because DIR and FNS are

the functions that account for a majority of the total corpus size.

106



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

Figure 5.10: By-function accuracy curve for the PPMI-SVD model: -(u)lo

Note. Abbreviation: CRT = criterion; DIR = direction; EFF = effector; FNS = final
state; INS = instrument; LOC = location

Table 5.7: By-function accuracy for the PPMI-SVD model: -(u)lo

Window size
Classification accuracy

CRT DIR EFF FNS INS LOC
1 0.497 0.547 0.462 0.425 0.491 0.353
3 0.552 0.730 0.562 0.394 0.482 0.347
5 0.426 0.840 0.438 0.530 0.348 0.220
7 0.313 0.855 0.312 0.714 0.248 0.140
9 0.262 0.833 0.238 0.767 0.221 0.140
10 0.257 0.830 0.238 0.770 0.220 0.127

107



5.2. MODEL PERFORMANCE: CLASSIFICATION

The classification accuracy of the SGNS model for -(u)lo also varied by

the types of functions, as presented in Figure 5.11 and Table 5.8. The mean

of classification accuracy was the highest for DIR (0.774) and the lowest for

FNS (0.058); the other functions performed accuracy ranging from 0.141 to

0.634. The change of accuracy for all the functions seemed stable.

Figure 5.11: By-function accuracy curve for the SGNS model: -(u)lo

Note. Abbreviation: CRT = criterion; DIR = direction; EFF = effector; FNS = final
state; INS = instrument; LOC = location

108



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

Table 5.8: By-function accuracy for the SGNS model: -(u)lo

Window size
Classification accuracy

CRT DIR EFF FNS INS LOC
1 0.507 0.769 0.550 0.011 0.147 0.247
3 0.554 0.874 0.538 0.039 0.154 0.313
5 0.468 0.797 0.662 0.072 0.124 0.420
7 0.455 0.739 0.700 0.087 0.121 0.480
9 0.461 0.688 0.725 0.076 0.132 0.553
10 0.492 0.695 0.725 0.060 0.137 0.540

5.2.3 Correlation between corpus size and classification ac-

curacy

As shown in Sections 5.2.1 and 5.2.2, the model performance was similar

to the accuracy patterns of the functions of each postposition occurring the

most in the corpus data. This implies that the classification accuracymay be

affected by the corpus size of each function. To further explore possible re-

lationships between the size of training corpora and the models’ by-function

classification accuracy, I conducted a correlation analysis by postposition.

For this task, I calculated the Pearson Correlation between the mean accu-

racy of each model and of each function for these postpositions per context

window size.

-ey

Of the eight functions of -ey, LOC and CRT accounted for the largest portion

of the total corpus. As shown in Table 5.9, the mean accuracy of the PPMI-

SVDmodel correlated highly with that of LOC and CRT. In contrast, the rest of

109



5.2. MODEL PERFORMANCE: CLASSIFICATION

functions yielded negative correlation values (except for EFF) because they

accounted for a small portion of the total corpus size. On the other hand,

the SGNS model did not seem to demonstrate any meaningful correlation

between the corpus size and the model performance. One possible reason

for this difference is that the SGNSmodel was not based on token frequency

but on type frequency.

Table 5.9: Correlation between the accuracy of eachmodel and of each func-
tion for -ey by window size

Function Corpus size
Correlation

PPMI-SVD SGNS
LOC 1,780 0.983 0.797
CRT 1,516 0.907 0.854
THM 448 -0.687 0.765
GOL 441 -0.854 0.669
FNS 216 -0.967 -0.377
EFF 198 0.207 0.299
INS 69 -0.972 -0.713
AGT 47 -0.737 0.631

Note. Abbreviation: AGT = agent; CRT = criterion; EFF = effector; FNS = final

state; GOL = goal; INS = instrument; LOC = location; THM = theme

-eyse

The occurrence of LOC accounted for more than 85% of the total corpus. As

shown in Table 5.10, the overall accuracy has a strong positive correlation

with LOC and a negative correlation with SRC for both models. This conver-

gence of results across the two models may be due to an overwhelmingly

larger number of LOC than SRC in the corpus, which increased word types

110



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

as well.

Table 5.10: Correlation between the accuracy of each model and of each
function for -eyse by window size

Function Corpus size
Correlation

PPMI-SVD SGNS
LOC 4,206 0.998 0.998
SRC 647 -0.971 -0.904

Note. Abbreviation: LOC = location; SRC = source

-(u)lo

Of the six functions of -(u)lo, FNS and DIR accounted for the largest portion

of the total corpus. As presented in Table 5.11, the PPMI-SVDmodel showed

that the mean accuracy of the model and of each function were highly cor-

related with FNS and DIR. On the other hand, the other functions showed

negative correlation values because they accounted for the smaller portion

of the corpus size. However, the result showed no clear tendency in the cor-

relation between the corpus size and the overall accuracy of each function

in the SGNS model. This is possibly due to the same reason as -ey, which

was operated based on type frequency rather than token frequency.

111



5.3. VISUALIZATION SYSTEM: CLUSTERS AND CO-OCCURRING WORDS

Table 5.11: Correlation between the accuracy of each model and of each
function for -(u)lo by window size

Function Corpus size
Correlation

PPMI-SVD SGNS
FNS 1,681 0.903 -0.273
DIR 1,449 0.952 0.907
INS 739 -0.952 0.564
CRT 593 -0.862 0.716
LOC 158 -0.949 -0.446
EFF 88 -0.797 -0.671

Note. Abbreviation: CRT = criterion; DIR = direction; EFF = effector; FNS = final

state; INS = instrument; LOC = location

Overall, the PPMI-SVD model was affected by the corpus size more than

the SGNS model. The performance of the PPMI-SVD model was similar to

accuracy patterns of the functions occupying the larger portion of each post-

position. This is because, the word-word matrix was used in the process

of converting words to vectors, so it was sensitive to the token frequency

(Jurafsky and Martin, 2019). On the other hand, one-hot encoding was used

for the SGNS model in the same process, so it relied on the type frequency

(Mikolov et al., 2013a).

5.3 Visualization system: clusters and co-occurring

words

The visualization system aimed to identify the word-level embeddings inter-

actively in order to see the changes of the clusters between each function of

112



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

the postpositions and the co-occurring words. In this section, I provide find-

ings of the visualization that I developed. I recommend seeing these findings

while demonstrating the visualization system together 1.

5.3.1 Changes of clusters by environments (model and win-

dow size)

The visualization system showed word clusters through distributional se-

mantic maps. To statistically explore changes of the clusters by model and

window size, I performed a series of cluster analysis. This allows exploratory

data analysis in which observations are divided into groups that share com-

mon characteristics (Romersburg, 1984). Among the many kinds of cluster

analyses such as Hierarchical clustering (Sibson, 1973), K-means clustering

(MacQueen, 1967), and Density-based clustering (Sander et al., 1998), I used

the Density-based clustering for analysis. This is due to the advantage it has

of generating groups based on the density of the distribution data that al-

lows us to discover groups of arbitrary shape as well as to distinguish noise

(Sander et al., 1998). For the cluster analysis, I used the dbscan package

(Hahsler et al., 2019) through R (R version 3.6.2; R Core Team, 2019). I then

created density maps for each distributional map to see the optimal number

of groups by dbscan.

Figures 5.12-5.17 present the bar chart for the number of grouping re-

sults obtained from the density cluster for each postposition per window

size, together with a distributional semantic map where the postposition

showed the best classification accuracy. In the PPMI-SVD model (Figures
1PostEmbedding, the first visualization system is available at: https://seongmin-

mun.github.io/VisualSystem/Major/PostEmbedding/index.html

113

https://www.r-project.org/contributors.html
https://seongmin-mun.github.io/VisualSystem/Major/PostEmbedding/index.htmll
https://seongmin-mun.github.io/VisualSystem/Major/PostEmbedding/index.htmll


5.3. VISUALIZATION SYSTEM: CLUSTERS AND CO-OCCURRING WORDS

5.12-5.14), the bar chart showed that each distributional semantic map en-

gaged in one or two groups in the end, and high-frequency words were lo-

cated in the center of each distributional semantic map. This is because the

PPMI-SVD model worked based on the frequency of tokens.

Figure 5.12: Bar chart of density cluster result and distributional semantic
map for -ey (PPMI-SVD). Red in graph = the size of window showing the high-
est accuracy.

114



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

Figure 5.13: Bar chart of density cluster result and distributional semantic
map for -eyse (PPMI-SVD). Red in graph = the size of window showing the
highest accuracy.

115



5.3. VISUALIZATION SYSTEM: CLUSTERS AND CO-OCCURRING WORDS

Figure 5.14: Bar chart of density cluster result and distributional semantic
map for -(u)lo (PPMI-SVD). Red in graph = the size of window showing the
highest accuracy.

In contrast, the SGNSmodel (Figures 5.15-5.17), the outcomes of the den-

sity cluster result showed that all distributional semantic maps were gath-

ered as one group. Moreover, the words seem to be widely distributed, re-

gardless of word frequency.

116



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

Figure 5.15: Bar chart of the density cluster result and distributional semantic
map for -ey (SGNS). Red in graph = the size of window showing the highest
accuracy.

117



5.3. VISUALIZATION SYSTEM: CLUSTERS AND CO-OCCURRING WORDS

Figure 5.16: Bar chart of the density cluster result and distributional semantic
map for -eyse (SGNS). Red in graph = the size of window showing the highest
accuracy.

118



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

Figure 5.17: Bar chart of the density cluster result and distributional semantic
map for -(u)lo (SGNS). Red in graph = the size of window showing the highest
accuracy.

119



5.3. VISUALIZATION SYSTEM: CLUSTERS AND CO-OCCURRING WORDS

In summary, the most frequent words were placed in the center of the

cluster for the PPMI-SVD model. This is because it operated on the basis of

token frequency. In contrast, the SGNS model was based on type frequency,

and the words were distributed across all window sizes, regardless of token

frequency. However, the cluster analysis showed that the distributional se-

mantic maps for eachmodel were not so much different in terms of the final

product of grouping (producing one or two groups for each model), indicat-

ing that the clusters created did not differ significantly from each other by

environments.

5.3.2 Changes of co-occurringwords by the functions of each

postposition

-ey

Figure 5.18 shows the embedding results of when the highest classification

accuracy performancewas obtained (0.600; PPMI-SVDwith thewindow size

of nine). Similar to the other PPMI-SVD models (Section 5.3.1), words that

appeared frequently in the entire corpus were at the center of the cluster.

120



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

Figure 5.18: Distributional semantic map for -ey (PPMI-SVD; window size of
nine)

Figures 5.19 and 5.20 show clusters between each function of -ey and

co-occurring words (only the top five frequent words). The value in each cir-

cle indicates the frequency of each word, the double arrows indicate that the

twowords are affected by each other, and values next to the arrows show co-

sine similarity scores between each postposition and its co-occurringwords.

When -eywas used as LOC, themost frequent wordwas iss-‘to exist’/VV (765

instances). For CRT, elkwul-‘face’/NNG (40 instances) was frequently used.

In the case of THM, the most frequently used word was kukes-‘that or it’/NP

121



5.3. VISUALIZATION SYSTEM: CLUSTERS AND CO-OCCURRING WORDS

(47 instances). Considering that this word is often used as placeholder for

theme (Choo and Kwak, 2008), the close association between -ey and kukes-

‘that or it’/NP is reasonable. For GOL, the verb takase-‘come close’/VV (2 in-

stances) related to themotion was included in the list of co-occurring words,

and chengnyen-‘young boy’/NNG was most used among the other words.

The two words showed high similarity but showed a low co-occurrence fre-

quency. This is due to two words only appeared when -ey was used as GOL.

122



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

Figure 5.19: By-function co-occurring words for -ey: LOC, CRT, THM, and GOL

Note. Abbreviation: JKB = adverbial postposition; MAG = general adverb;
NNG = common noun; NP = pronoun; VV = verb

When -eywasused as FNS, themost frequentwordwas ipen-‘this time’/NNG

(95 instances). For EFF, the noun ttaymwun-‘reason’/NNG (80 instances), which

relates to cause and effect, was ranked as the most frequent co-occurring

word. In the case of INS and AGT, two conjunctive adverbs, kuliko-‘and’/MAJ

(67 instances) and kulena-‘but’/MAJ (95 instances) appeared frequently.

123



5.3. VISUALIZATION SYSTEM: CLUSTERS AND CO-OCCURRING WORDS

Figure 5.20: By-function co-occurring words for -ey: FNS, EFF, INS, and AGT

Note. Abbreviation: JKB = adverbial postposition; MAJ =conjunctive adverb;
NNB = bound noun; NNG = common noun; NNP = proper noun; VV = verb

124



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

-eyse

Figure 5.21 displays the embedding outcomesof the best performance achieved

(0.861; PPMI-SVD with the window size of eight). The most frequent appear-

ing words in the corpus were at the center of the cluster, just like the other

PPMI-SVD models, with both SRC and LOC located in the center.

Figure 5.21: Distributional semantic map for -eyse (PPMI-SVD; window size
of eight)

As shown in Figure 5.22,when -eysewasused as LOC, the verb na-‘come’/VV

(106 instances)was included in the list of co-occurringwords, and soli-‘sound’/NNG

125



5.3. VISUALIZATION SYSTEM: CLUSTERS AND CO-OCCURRING WORDS

(121 instances) was the noun that was frequently used. In the case of SRC,

the noun wi-‘up’/NNG (50 instances) related to direction, was included in the

list of co-occurringwords. This shows thatword semantics has a strong con-

nection to the functions of -eyse.

Figure 5.22: By-function co-occurring words for -eyse: LOC and SRC

Note. Abbreviation: JKB = adverbial postposition; MAG = general adverb;
MAJ = conjunctive adverb; NNG = common noun; NP = pronoun; VV = verb

-(u)lo

For -(u)lo, the highest classification accuracy was obtained when the PPMI-

SVD model used with the window size of nine. Figure 5.23 shows the result

that the words that appear frequently in the entire corpus are at the center.

126



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

Figure 5.23: Distributional semantic map for -(u)lo (PPMI-SVD; window size
of nine)

As shown in Figure 5.24, when -(u)lo was used as FNS, the most fre-

quently usedwordwas tut-‘listen’/VV (13 instances). For DIR, eti-‘where’/MAJ

(96 instances) and nao-‘come out’/VV (59 instances) were included in the

list of co-occurring words, both of which are related to the target function

semantically. In the case of INS, mal-‘word’/NNG (257 instances) and tulese-

‘pick up’/VV (32 instances) occurred as its co-occurring words. For CRT, the

verbmantul-‘make’/VV (54 instances) related to criterion, was included in the

list of co-occurring words, and sik-‘ways’/NNB (95 instances) appeared fre-

127



5.3. VISUALIZATION SYSTEM: CLUSTERS AND CO-OCCURRING WORDS

quently also.

Figure 5.24: By-function co-occurring words for -(u)lo: FNS, EFF, INS, and CRT

Note. Abbreviation: JKB = adverbial postposition; NNB = bound noun; NNG =
common noun; NNP = proper noun; NP = pronoun; VV = verb

Continuing to Figure 5.25, when -(u)lowas used as LOC, nouns indicating

locations such as elkwul-‘face’/NNG (64 instances) and sewul-‘seoul’/NNP

(56 instances) were included in the list of co-occurring words. In the case of

128



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

EFF, the verb pwulu-‘call’/VV (32 instances) related to reason, was included

in the list of co-occurring words.

Figure 5.25: By-function co-occurring words for -(u)lo: LOC and EFF

Note. Abbreviation: JKB = adverbial postposition; NNG= common noun; NNP
= proper noun; VV = verb

5.3.3 Interim summary of visualization results

The visualization system responded interactively to the options (e.g., model

types, postposition types, window sizes) and showed the corresponding re-

sults. I expected that the visualization could answer Hypothesis 3 (see Sec-

tion 5.1)—the relationships and their co-occurringwords should vary depend-

ing on the environments of word-level embedding. Tomy surprise, the PPMI-

SVD model showed that words with high frequency were located in the cen-

ter of each cluster without much change, and the SGNS model showed that

the words seemwidely distributed without little influence of word frequency.

129



5.4. DISCUSSION OF THE CHAPTER

However, cluster analysis showed that the two models did not differ signifi-

cantly from each other because the density clusters were gathered into one

or two clusters in the end. Regarding the co-occurringwords in each function

of the postpositions, the outcomes can be divided into the following types:

(i) words with high similarity but low frequency of co-occurrence, and (ii)

words with high similarity and also a high frequency of co-occurrence. The

first group were words that appeared only when they were used as a partic-

ular function. Conversely, the second group were words that had a strong

connection in language use regardless of which functions a postposition

was used.

5.4 Discussion of the Chapter

In this chapter, I reportedmodel performanceof the count-basedmodel (PPMI-

SVD) and the probability-based model (SGNS) in the classification of the

functions of the postpositions -ey, -eyse, and -(u)lo. There were three ma-

jor findings.

First, the fewer dedicated functions the postposition has, the higher the

classification accuracy was. Considering that the three postpositions have

different numbers of functions (e.g., two for -eyse, six for -(u)lo, and eight for

-ey), there was an inverse relation between the classification accuracy and

the number of functions in a postposition, as in Hypothesis 1 (see Section

5.1).

Second, contrary to Hypothesis 2 (see Section 5.1), the PPMI-SVD model

obtained high classification accuracy at a larger window size. The SGNS

model showed low classification accuracy, regardless of window size in the

130



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

case of -ey and -(u)lo and high classification accuracy at a larger window size

in -eyse. Considering that smaller context windows work better for syntactic

tasks and larger context windows contribute more to semantic tasks (e.g.,

Jurafsky and Martin, 2019, Levy et al., 1999), our model may have performed

more semantically than structurally.

Third, the cluster was not changed much by the environments of word-

level embedding. In the PPMI-SVD model, the words used most frequently

in the corpus were located in the center of the cluster; in the SGNS model,

in contrast, the words were distributed rather evenly, regardless of word fre-

quency. This was because the PPMI-SVD model was based on token fre-

quency and the SGNSmodel was based on type frequency. However, cluster

analysis showed that there was no clear difference between the two mod-

els because all of the density clusters for each distributional semantic map

were gathered as one or two groups in the end. In addition, I found that there

were two types of word group. First, words that appeared only when they

were used as a particular function. Second, words that had a strong connec-

tion in language use regardless of which functions a postposition was used.

However, they did not changemuch depending on the environments of word-

level embedding (2models * 3 postpositions * 10window sizes), which is not

consistent with Hypothesis 3 (see Section 5.1).

Despite these findings, the two models that I tested in this chapter have

serious limitations. The model performance is unsatisfactory considering

previous studies on the classification of the postpositions on which I fo-

cused (Bae et al., 2015, Kim and Ock, 2016, Shin et al., 2005). They reported

a level of accuracy ranging from 0.882 (Kang and Park, 2003) to 0.623 (Bae

et al., 2014). In contrast, the average level for my models was 0.550. Fur-

131



5.4. DISCUSSION OF THE CHAPTER

thermore, the model appears to perform well only when the target functions

occur very frequently in the data, which is not how I aimed to deal with pol-

ysemy resolution. It is due to the technical nature of word-level embedding,

which distinguishes words occurring in the entire corpus using only the mor-

phological information and the window size, and which uses words without

considering their possible different effects on determining the meaning of

a particular postposition. This is because the traditional word-level embed-

dingmodels are static—a single vector is assigned to each word (Ethayarajh,

2019, Liu et al., 2019a).

To overcome these problems, I employed Bidirectional Encoder Repre-

sentations from Transformer (BERT) (Devlin et al., 2018) for the classifica-

tion of the functions of the postpositions. BERT produces contextual em-

beddings, and this characteristicmay help us to create a better classification

system for postpositions. A recent trend to handle this task is called contex-

tualized word embedding, which converts all words into each vector by con-

sidering the context (e.g., position, a form of the word) in which they appear.

Various models have been proposed such as Embeddings from Language

Models (ELMo; Peters et al., 2018) andGenerative Pre-Training (GPT; Radford

et al., 2018), but BERT shows the best performance out of all of the models

introduced so far. Therefore, I applied BERT to my classification model in or-

der to improve model performance. This is outlined in detail in Chapters 6

and 7.

132



CHAPTER 5. RESULTS: WORD-LEVEL EMBEDDINGS

5.5 Summary of the Chapter

In this chapter, I provided the findings of the classification models and vi-

sual inspections, starting from my hypothesis on the research questions.

First, Section 5.2.1 showed that the classification accuracy is inversely pro-

portionate to the number of functions of a postposition. Second, Section

5.2.2 showed that high classification accuracy was not obtained in smaller

window sizes, but rather in larger window sizes. This section also showed

that the overall classification accuracy is similar to the curve of the functions

that accounts for a large portion of the total corpus size. Finally, Section 5.3

showed that the clusters and the co-occurring words of each function of the

postpositions was not very different based on the environments of word-

level embedding (2 models * 3 postpositions * 10 window sizes).

However, despite these findings, two limitations have been foundbecause

of the technical nature of word-level embedding, that a single vector is as-

signed to each word. One was that the model performance was lower than

the accuracy reported by the other studies, and the other was that it was

high only if the target functions occupy a large portion of each postposition

in the corpus data. To address these limitations, I decided to use BERT, which

is a contextualized word embedding model with the best performance. The

technical description and application of BERT will be discussed in the next

chapter.

133





Chapter 6
BERT for polysemy resolution

Theoutcomesof the twoword-level embeddingmodels (PPMI-SVDandSGNS)

revealed issues with model performance—accuracy seemed to be affected

by the corpus size of each function of the postpositions. This is because

word-level embedding converts a word into a single vector based on its mor-

phological form. To overcome this limitation, I employ Bidirectional Encoder

Representations from Transformer (BERT) (Devlin et al., 2018), a state-of-

the-art technique, for the same task but is sensitive to the context in which

words appear (e.g., Ethayarajh, 2019, Liu et al., 2019a). This chapter reviews

BERT as a classification model and provides methodological details on how

it handles the polysemy of the three adverbial postpositions in Korean.

6.1 How BERT was born

BERT was developed as a response to the downsides of previous models

for NLP tasks. Recurrent Neural Network (RNN) models (e.g., Mikolov et al.,

2010), for example, utilize information about prior cells in the neural network

in a circular manner, both by updating the current hidden state based on the

135



6.1. HOW BERT WAS BORN

information about the prior cell and by updating the posterior cell based on

the information about the current hidden state. This process is known as one

strength in addressing context information that indicates the correct mean-

ing by extracting hidden state from the sequential combination of words

(e.g., Mikolov et al., 2010, 2011, Sundermeyer et al., 2013).

Suppose the following sentence involving the postposition -(u)lo with a

function of DIR (Direction) as in (1).

(1) pang_07/NNG -(u)lo/JKB ka/VV n-ta/EF ./SF

pang-ulo

room-DIR

ka-n-ta.

go-PRS-DECL

‘(I am) going to the room.’

An RNN model (Figure 6.1) uses the information about the pang_07/NNG

(prior cell) to update information about -(u)lo/JKB (current hidden state) and

ka/VV (posterior cell) with -(u)lo/JKB (current hidden state). Two weights

(Wxh,Whh) and one bias value (b) are used to calculate information about the

current hidden state. First of all, the weight Wxh and the input of each word

aremultiplied by each other.When the prior cell comes in, theweightWhh and

the prior cell are multiplied by each other. Next, these two values and b are

added to each other and are represented as the current hidden state. Second,

the hyperbolic tangent (an activation function) is used to calculate the output

of the current hidden state. This function is advantageous for resolving the

Vanishing Gradient Problem, namely the issue that the gradient disappears

in the process of backpropagation (e.g., Bengio et al., 1994). The tangent

function is used to calculate the output value of the current hidden state and

136



CHAPTER 6. BERT FOR POLYSEMY RESOLUTION

then it is used to update information about the next hidden state. Finally, the

output value from the last hidden state is converted into a context vector of

the inputted context, and its probability is calculated by using the softmax

function (see Chapter 3).Wxh,Whh, and b aremodified gradually, in away that

minimizes the difference (i.e., an error) between a prediction and an outcome

by backpropagation.

Figure 6.1: Workflow of the RNN model adapted from Heo (2018)

The RNN models, which consider information about word context, has

an advantage in modeling with any size of context, such as long sentences,

paragraphs, and even documents (Tang et al., 2015). This is unlike the tra-

ditional deep learning models that follow the pre-defined context size for

the modeling (Chung et al., 2014). Due to this advantage, RNN models have

shown better performance than other techniques such as convolutional neu-

ral networks (Collobert andWeston, 2008), recursive neural networks (Socher

et al., 2011) for POS tagging (dos Santos and Zadrozny, 2014), multi-category

text categorization (Chen et al., 2017), and sentiment analysis (Poria et al.,

137



6.1. HOW BERT WAS BORN

2017).

However, one major issue with the RNN model is that it has to represent

all the information in a fixed-length context vector even if a word is not rel-

evant to the target context. This can lead the RNN model to be incapable

of processing sentences longer than those in the training corpus. Cho et al.

(2014) revealed this aspect, by showing that the performance of the basic

RNN model indeed decreases rapidly as the length of input sentences in-

creases.

To address this issue, Bahdanau et al. (2014) proposed an attentionmech-

anism that generates a dynamic context vector from all the hidden states. As

stated above, the RNN model uses only the fixed-length output value of the

last hidden state as a context vector for classification. In contrast, the atten-

tion model uses all the hidden state values and an attention weight of each

hidden state when generating a context vector. This aspect leads to better

performance in classification (e.g., Bahdanau et al., 2014, Parikh et al., 2016,

Seo et al., 2016).

Suppose that we have the same example sentence (1) here. Theworkflow

of extracting the context vector from it through the attentionmodel is shown

in Figure 6.2. The basic structure of the attention model is the same as the

RNN model. However, instead of generating the context vector from the last

hidden state, the attention model uses fully connected (FC) layers, which

means that all former layers are connected with the next ones to calculate

the score for each hidden state. These values are then converted to probabil-

ity scores through the softmax function. The probability score of each word

becomes an attention weight, indicating which words should be focused on

generating the context vector. Finally, the dynamic context vector is obtained

138



CHAPTER 6. BERT FOR POLYSEMY RESOLUTION

from the calculation that summed the values obtained bymultiplying the hid-

den state of each word (y) and each attention weight (s).

Figure 6.2: Workflow of the attention model adapted from Heo (2018)

139



6.1. HOW BERT WAS BORN

The attention model uses information about all hidden states and focus

on the core one among these through attention weight in order to generate

a dynamic context vector. This characteristic allows the model to perform

better than the RNN model for machine translation (Bahdanau et al., 2014),

syntactical parsing (Vinyals et al., 2015), and sentiment analysis (Wang et al.,

2016).

Despite its strength, the attention model has a weakness in terms of ef-

ficiency; it takes a huge amount of time to train the model. This is because

it works on the basis of the RNN model, which proceeds sequentially, and

so it must wait until the training of a previous phase is complete to pass to

another. Parikh et al. (2016), for example, claimed that the performance of

the attention model is problematic in two aspects: (i) the time complexity,

that quantifies the amount of time taken by the attention model to generate

context vector and (ii) the space complexity, that quantifies the amount of

space or memory taken.

As a remedy for this issue, Vaswani et al. (2017) proposed a self-attention

model (Transformer), eliminating RNN from the attention model and paral-

lelizing the learning processes by computing the dot products of the query

with all keys. Figure 6.3 illustrates the workflow of the self-attention model

with the same example sentence (1).

140



CHAPTER 6. BERT FOR POLYSEMY RESOLUTION

Figure 6.3: Workflow of the self-attention model

141



6.1. HOW BERT WAS BORN

The steps of the self-attention model workflow are as follows: first, the

vector of each word and the positional encoding value that indicates the po-

sition of the word in the sentence are merged into a single value. Second,

one matrix is created on the basis of word inputs. Third, the weight matrices

wq , wk , and wv (optimized by a feed-forward process) are multiplied to gen-

erate a query (the current input), a key (the other words in the current input

to calculate the correlation with the query), and a value (the correlation value

of the query and the key). By using these three values, a self-attention model

generates a vector that best represents the model, as shown in Figure 6.4.

Figure 6.4: Calculation process of the self-attention model

142



CHAPTER 6. BERT FOR POLYSEMY RESOLUTION

The correlation between the query and the keys in the sentence is com-

puted through their dot products. This score, called an attention score, rep-

resents the degree of relation between a word and the current input. In order

to get the probability scores, the attention score is divided by the square-root

of the dimension of the key to prevent the score from getting larger as the di-

mension of the key increases. Then each attention score is obtained through

the softmax function. Each softmax probability is multiplied by the values.

The calculated scores are then added to represent the attention layer output

of one token itself in the current input. Finally, the attention layer outputs are

merged as one matrix representing the current input sentence.

In order to represent the context vector more accurately, the multi-head

self-attention model employs multiple models in the following way (Figure

6.5): first of all, themulti-head self-attentionmodel generates amatrix (whose

size is the same as the input matrix (a)) by merging all thematrices obtained

by individual self-attention models, and then the generated matrix is multi-

plied by the weight (wo) to generate matrix (b). After then, the prior input

matrix (a) is added to the current matrix (b). This is called a residual connec-

tion that prevents the value of the positional encoding from being changed

during the backpropagation. The vector of each word is extracted from the

matrix (b) and updated in the fully connected layer. The updated word vec-

tors are then merged to create a matrix (c). Finally, the matrix (b) is added to

the matrix (c), following the same concept of the residual connection. The

final matrix is normalized by using the mean and standard deviation of each

vector. Thematrix (c) represents the final output value of themulti-head self-

attention model.

143



6.2. CHARACTERISTICS OF BERT

Figure 6.5: Workflow of the multi-head self-attention model (an encoder
layer)

Transformer, which is a base model of BERT, consists of six multi-head

self-attention models, each of which includes eight self-attention models. It

generates a context vector the sameway themulti-head self-attentionmodel

does, except that Transformer uses the output of the sixth from the last one

as the final context vector.

6.2 Characteristics of BERT

BERT has a set of pre-trained language representations obtained by general-

purpose, large-scale corpora. This applies increasingly to downstream NLP

tasks such as language translation, sentence classification, and question an-

swering (e.g., Devlin et al., 2018, Tang et al., 2019). Themodel architecture of

BERT is based on Transformer, with some changes in the input unit and the

specific tasks for model training. Just as the word-level embedding puts em-

144



CHAPTER 6. BERT FOR POLYSEMY RESOLUTION

phasis on vectorizing, so also does BERT, commonly through the WordPiece

tokenization (Devlin et al., 2018).

6.2.1 WordPiece tokenization

The WordPiece tokenization, proposed by Schuster and Nakajima (2012),

works on the basis of bi-gram pairs. Basically, the WordPiece tokenization

has strength in addressing to build vocabulary including segmentation by

morpheme. Suppose that the model encounters the word walking. Unless

this word occurs frequently enough in the training corpus, the model may

not learn how to deal with this word. However, the model may have words

like walked, walker, and walks occurring a few times each. Without segmen-

tation by morpheme, the model recognizes all these words as completely

different ones. However, if these words are segmented as walk, ##ing, walk,

##ed, and so forth, themodel is able to notice that all the original words have

walk in common, which in turn occurs much more frequently while training

(Schuster and Nakajima, 2012).

Theworkflow of theWordPiece tokenization is as follows (Sennrich et al.,

2016): first, it splits a sentence into words (by using white-space-based tok-

enization) and these are turned into individual alphabets to be used as aword

candidate list and set the number of iterations for learning. The word candi-

date list is used when the WordPiece tokenization combines each word into

bi-gram pairs. After then, the WordPiece tokenization combines two individ-

ual alphabets as one word per learning. If the combined words have a high

frequency of occurrence, segmentation by morpheme is removed from the

word candidate list and the combined word is included instead. Finally, after

145



6.2. CHARACTERISTICS OF BERT

the learning has progressed by the specified number of learning iteration, the

remaining words in the word candidate list are stored in the vocabulary. This

is then used for the BERT training (see more details in follows).

Whereas the WordPiece tokenization operates in the above way in En-

glish, it works differently in Korean. The algorithm extracts words by com-

bining two syllables as one word per learning. First by splitting a sentence

into words (by using white-space-based tokenization) and then the word into

syllables. Second, by putting the bi-gram pairs of each syllable together. And

third, by extracting word candidates which are frequently attested in the sen-

tences into the vocabulary.

Suppose the following sentence involving the postposition -(u)lo with a

function of FNS (Final state) as in (2).

(2) Yongho-lul

Yongho-ACC

pancang-ulo

class leader-FNS

senchwul ha-ass-ko

election do-PST-and

Chelswu-lul

Chelswu-ACC

pwu-pancang-ulo

vice-class leader-FNS

senchwul ha-ass-ta.

election do-PST-DECL

‘(We) elected Yongho as the leader of the class and Chelswu as the

vice- leader of the class.’

This sentence has six segments (yongholul, pancangulo, senchwulhayssko,

chelswulul, pwupancangulo, senchwulhayssta). Eachword segment then splits

into syllables as shown in Figure 6.6. During this process, the character ##

is attached to the front of each syllable except the first syllable of the seg-

ment. This is designed to increase model performance by recognizing the

same form of syllables differently.

146



CHAPTER 6. BERT FOR POLYSEMY RESOLUTION

Figure 6.6: Segmentation: Splitting word segments into syllables

Next, in order to get word candidates for the vocabulary to be used in

BERT training, theWordPiece tokenization algorithmfinds frequently attested

bi-gram pairs, and utilizes these as a word candidate instead of as syllables,

as shown in Figure 6.7. If the iteration number is 0, the WordPiece tokeniza-

tion splits all word segments into syllables to be used as a word candidate

list. When the iteration progresses, the bi-gram pairs that are frequently used

in the previous iteration remain as one single combination in the word candi-

date list whereas the rest of the morphemes are removed. As shown in Fig-

ure 6.7 (b), if there are many bi-gram pairs which have the same frequency

values, the WordPiece tokenization only considers the first bi-gram pair in

the word candidate list. Finally, the final word candidate list is fed into the

vocabulary for the BERT training.

147



6.2. CHARACTERISTICS OF BERT

Figure 6.7: Workflow of the WordPiece tokenization

6.2.2 BERT

Transformer combines word information in a sentence with the positional

information of each word and uses this combinatorial information as input

formodel training. However, BERT uses a combination of token embeddings,

segment embeddings, and position embeddings as input (Devlin et al., 2018).

148



CHAPTER 6. BERT FOR POLYSEMY RESOLUTION

Suppose the sentence involving the postposition -(u)lo with a function of

DIR (Direction) as in (3) and the sentence involving the postposition -ey with

a function of LOC (Location) as in (4).

(3) pang_07/NNG -(u)lo/JKB ka/VV n-ta/EF ./SF

pang-ulo

room-DIR

ka-n-ta.

go-PRS-DECL

‘(I am) going to the room.’

(4) kuliko/MAJ chimtay_02/NNG -ey/JKB nwup_01/VV nun-ta/EF ./SF

Kuliko

And

chimtay-ey

bed-LOC

nwup-nun-ta.

lie-PRS-DECL

‘And (I) lay down on the bed.’

Figure 6.8 illustrates the three embedding types of BERT from the sen-

tences ((3), (4)). For the input, it uses the two sentences as a single input.

The sentences are split by marking [CLS] (‘classification’ indicating the start

of a sentence) at the beginning of the first and [SEP] (‘separation’ indicat-

ing the end of a sentence) at the end of each sentence. Next, BERT makes

tokens for input by using WordPiece tokenization, which extracts frequently

attested bi-gram pairs, and utilizes these pairs as tokens. For the token em-

bedding, each token extracted through the WordPiece tokenization is repre-

sented as an embedding value of each token. For the segment embedding,

the tokens in the first sentence are expressed as A and the ones in the sec-

ond sentence asB. For the position embedding, BERT indicates the position

number of each token in the input.

149



6.2. CHARACTERISTICS OF BERT

Figure 6.8: Three embedding types for BERT adapted fromDevlin et al. (2018)

These three embeddings are used for model training, which is based on

how the Transformer model is trained (see Section 6.1). One difference is

that BERT employs not only Masked Language Model (MLM) but also Next

Sentence Prediction (NSP) as the trainingmethod. As shown in Figure 6.9, in

order to conduct the MLM training, sentences in the whole corpus are trans-

formed into three different types: (i) 80% of the corpus include the [MASK]

token which replaces only one word in the particular sentences (e.g., pang

[Mask] ka-n ##ta.), (ii) 10% include a random word which replaces only one

word in the particular sentences (e.g., pang ##eyse ka-n ##ta.), and (iii) the

remaining 10% are unchanged. The aim of the MLM task is to predict the

masked words correctly by using the given unmasked words.

150



CHAPTER 6. BERT FOR POLYSEMY RESOLUTION

Figure 6.9: Workflow of the Masked Language Model (MLM)

The other training method is NSP, with the aim of predicting whether or

not a sentence that follows is the correct one in the original document. This

method assumes that an acontextual sentence will be disconnected from

the sentence of interest. As shown in Figure 6.10, in order to conduct the

NSP training, the second sentence of a sentence pair changes such that a

half of the second becomes a randomone (i.e., NotNext), and the other half is

intact (i.e., IsNext). BERT then proceeds to the training by classifyingwhether

or not the next sentence is an actual sentence.

151



6.3. EFFECTIVENESS OF BERT

Figure 6.10: Workflow of the Next Sentence Prediction (NSP)

BERT conducts NSP for the input sentence pairs and MLM after divid-

ing pairs of sentences into individual ones. The performance of BERT is im-

proved by using both training methods that continuously optimize the loss

between the predicted outcome and the actual one.

6.3 Effectiveness of BERT

The recent deep-learning, neural-network models such as Embeddings from

Language Models (ELMo; Peters et al., 2018), Generative Pre-Training (GPT;

Radford et al., 2018), and BERT (Devlin et al., 2018) have successfully created

152



CHAPTER 6. BERT FOR POLYSEMY RESOLUTION

contextualized word embeddings, allowing the same word types to be repre-

sented differently in a given context (e.g., Liu et al., 2019a, Loureiro and Jorge,

2019,Wiedemann et al., 2019). Replacing the static embeddings produced by

PPMI-SVD (Turney and Pantel, 2010) and SGNS (Mikolov et al., 2013a) with

the contextualized representations has improved performance in NLP tasks

significantly (e.g., Clark et al., 2019, Lin et al., 2019, Liu et al., 2019a, Loureiro

and Jorge, 2019, Wiedemann et al., 2019).

Some studies compared the performance of various models on the ba-

sis of contextualized word embedding (e.g., Devlin et al., 2018, Sanh et al.,

2019, Tang et al., 2019). For instance, Devlin et al. (2018) introduced BERT

for the first time and reported the comparison of BERT, ELMo, and GPT. They

found that the BERT outperformed the other models on eleven NLP tasks

(GLUE score to 80.5% (7.7% point absolute improvement)) and thus, more ef-

fective. Moreover, Tang et al. (2019) conducted experiments on the General

Language Understanding Evaluation (GLUE; Wang et al., 2018) benchmark,

a collection of six Natural Language Understanding tasks that are classified

into three categories: (i) Stanford Sentiment Treebank 2 (SST-2; Socher et al.,

2013) that classifies a single sentence according to intended sentiment (pos-

itive or negative), (ii)Multi-genreNatural Language Inference (MNLI;Williams

et al., 2017) that classifies a pair of sentences considering whether the next

sentence is contextually correct or not, and (iii) Quora Question Pairs (QQP;

Iyer et al., 2017) that generates an answer to a given question. They found

that BERT showed an accuracy of 0.949 in SST-2, an accuracy of 0.893 in

QQP, and an accuracy of 0.867 in MNLI, indicating that it shows the best per-

formance out of all the models introduced so far. Inspired by these studies,

employing BERT for the downstream NLP tasks became a recent trend in

153



6.4. SUMMARY OF THE CHAPTER

contextualized word embedding research.

6.4 Summary of the Chapter

The performance of the two word-level embedding models (PPMI-SVD and

SGNS) showed an unsatisfactory level of performance in polysemy resolu-

tion. This is due to the technical nature of thesemodels; they are static in that

a single vector is assigned to each word (Ethayarajh, 2019, Liu et al., 2019a).

As a remedy to this issue, I employ Bidirectional Encoder Representations

fromTransformer (BERT) (Devlin et al., 2018), which considers neighborhood

information about a polysemous word on the basis of the context in which

they appear. BERT was developed as a response to improving the downside

of previous language models such as the recurrent neural network model,

attention model, self-attention model, multi-head self-attention model, and

Transformer.

There aremany natural-networkmodels such as ELMo (Peters et al., 2018),

GPT (Radford et al., 2018), and BERT (Devlin et al., 2018). However, BERT

showed the best performance out of all the models introduced so far (e.g.,

Clark et al., 2019, Lin et al., 2019, Liu et al., 2019a, Loureiro and Jorge, 2019,

Wiedemann et al., 2019). Inspired by these results, I decided to use BERT for

the classification of the functions of the postpositions in this dissertation.

154



Chapter 7
Methodological set-up: BERT

The previous chapter has shown that the performance of the two word-level

embedding models (PPMI-SVD and SGNS) was modulated by the size of

training corpora containing specific functions of the Korean adverbial post-

positions (see Chapter5). In addition, previous models showed unsatisfac-

tory classification accuracy compared to the previous studies. To handle

these issues, I use BERT (Devlin et al., 2018) to classify the functions of these

postpositions. Unlike word embedding models that assign a single vector

to each word type, BERT considers not only word form but also its context

information—word vectors that are sensitive to the context in which they ap-

pear (e.g., Ethayarajh, 2019, Liu et al., 2019a).

This chapter introduces methodological details of BERT, with the three

specific research questions as follows:

• Research question 1: How does the number of functions involving a

postposition affect the model performance of BERT?

• Research question 2: How the asymmetric proportions of the functions

in each postposition affect the model performance?

155



7.1. CORPUS

• Research question 3: How does the BERTmodel classify sentences for

each postposition based on function as the epoch proceeds?

7.1 Corpus

I use the same hand-coded corpus that was used for the word-level embed-

ding models (Section 4.1.4), with some changes in the data considering how

BERT works. First, BERT uses raw sentences to indicate the beginning and

end of a sentence with [CLS] (‘classification’; indicating the start of a sen-

tence) before a sentence and [SEP] (‘separation’; indicating the end of a sen-

tence) after a sentence. Second, BERT expresses the function of the post-

positions used in the sentence in a separate column, which is different from

word-level embedding models that used lemmatized and POS-tagged sen-

tences for training. Figure 7.1 illustrates the format of the data frame used

for the BERT training and testing.

156



CHAPTER 7. METHODOLOGICAL SET-UP: BERT

Figure 7.1: Example sentences used in the BERT training (-ey, CRT)

The rows of the data frame are composed of the total number of the

sentence (4,715 sentences for -ey, 4,853 sentences for -eyse, and 4,708 sen-

tences for -(u)lo). The columns are the index, label (-ey: 8 labels, -eyse: 2

labels, -(u)lo: 6 labels), and sentence. To use this data in the BERT training,

the data for training and testing should be independent. I thus split the cor-

pus into two sub-sets, one with 90 percent of the corpus for the training and

the remaining 10 percent for the testing.

7.2 Model training

For sentence-level embedding for BERT to recognize the polysemy involv-

ing Korean adverbial postpositions in each epoch (i.e., step), I devised a

BERT model through Python programming, by adapting functions provided

by keras (Chollet, 2015), pytorch (Paszke et al., 2019), scikit-learn (Pedregosa

et al., 2012), tensorflow (Abadi et al., 2016), and transformers (Wolf et al.,

157



7.2. MODEL TRAINING

2019). For the training, I used GPUs and TPUs provided by Google Collab

for the environment with a view for faster processing, because BERT con-

sumes a considerable amount of memory (Jeon et al., 2019). To avoid ex-

cessive memory consumption, I also used an iterator through the function

DataLoader from pytorch (Paszke et al., 2019) with the batch size of 32 in

random sampling of the data per epoch (i.e., step). I then employed a pre-

trained language model in order to obtain high accuracy of outcomes. For

this, I used a Korean BERT (KoBERT), which was developed by Jeon et al.

(2019).

7.2.1 KoBERT: pre-trained BERT model for Korean

KoBERT is a BERT model pre-trained with a corpus of 5 million sentences

extracted from Korean Wikipedia. It consists of 768 hidden units, 12 atten-

tion heads, and the same 12 encoder Layers as the BERT base cased, which

was previously distributed by Google. Jeon et al. (2019) explained that the

existing BERT base multilingual cased showed unsatisfactory performance

for Korean, so they conducted this work to release the Korean version of the

BERTmodel. To evaluate the performance, they performed an evaluation that

classifies movie review sentences as positive or negative using the existing

BERT basemultilingual cased, KoGPT2, and KoBERT. The results showed that

BERT basemultilingual cased showed an accuracy of 0.875, KoGPT2 showed

an accuracy of 0.899, and KoBERT showed the highest performance among

the three with an accuracy of 0.901. Based on this result, I used KoBERT as

pre-trained model for the BERT fine-tuning.

158



CHAPTER 7. METHODOLOGICAL SET-UP: BERT

7.2.2 BERT fine-tuning by using BertForSequenceClassifica-

tion

In order to start the training, two steps were necessary before working on

the main training algorithm (i.e., input embedding and parameter setting).

First, the input data are transformed into three embedding types: token, seg-

ment, and position (Devlin et al., 2018). Suppose the sentence involving the

postposition -(u)lo with a function of DIR (Direction) as in (1).

(1) 방으로

pang-ulo

room-DIR

간다.

ka-n-ta.

go-PRS-DECL

‘(I am) going to the room.’

Figure 7.2 illustrates the three embedding types of BERT from the sen-

tence (1). At the first step of input embedding, I set the maximum number

of tokens in one sentence to 128 for the optimal and efficient model train-

ing process. For the token embedding, KoBertTokenizer is used to tokenize

the sentences in the data. For the position embedding, the tokens generated

through the KoBertTokenizer are converted into numeric values that indicate

a unique index of the tokens in the vocabulary of KoBERT. In this process,

the maximum number of tokens in one sentence was designated as 128.

For the segment embedding, the number of tokens of each sentence is con-

verted into 128 numeric values using 0 (i.e., did not exist) and 1 (i.e., existed).

If the number of tokens in the sentence were more than 128, the rest are au-

tomatically eliminated from the sentence in this process. In addition, to use

BERT as classification model, I extracted the labels of the data separately.

The information including three types of embeddings and labels extracted

159



7.2. MODEL TRAINING

from the data is transformed as tensors, which reduces data size and thus,

makes BERT-related data processing faster.

Figure 7.2: Input embeddings for the BERT classification model

The other required step for the BERT trainingwas parameter setting. First,

I set the value of the seed as 42, which is the initial value that enables the

BERT model to start (Guggisberg, 2020). Second, I set the optimizer, which

includes two parameters. One is epsilon (eps), which is a very small number,

to prevent any division by zero in the calculation (Brownlee, 2020). I set the

epsilon (eps) as 0.00000008 for the initial value. The other was the learning

rate (lr), which is updated according to the outcomes of each epoch. I set

the initial value of the learning rate (lr) as 0.00002. For the setting of these

hyperparameters for the BERT model, I followed the recommendations of

McCormick (2019).

After finishing all the necessary steps taken, the algorithm for the BERT

training proceeded in the following ways (see Appendix A.3 for the entire

160



CHAPTER 7. METHODOLOGICAL SET-UP: BERT

algorithm)1. First of all, KoBERT (i.e., pre-trained model) is loaded through

the function BertForSequenceClassification from transformers (Wolf et al.,

2019) by each postposition. Second, I fine-tuned the pre-trained BERTmodel

by using the training set. In this process, BERT reduces the loss of the model

and updates the learning rate. Third, the testing set is loaded to evaluate

whether the fine-tuned model recognizes the intended function of postposi-

tions in each sentence. The accuracy rate of each function and the total ac-

curacy rate was measured by comparing the intended function of attested

postposition in each testing instancewith the classified function through the

fine-tuned BERT model. As a result of training in each epoch, I obtained two

types of outcome, one composing a set of arrays (the number of sentences

in each postposition; -ey: 4,715, -eyse: 4,853, and -(u)lo: 4,708) and the other

composing the total of sets (the number of sentences in each postposition)

of arrays (the number of functions in each postposition; -ey: 8, -eyse: 2, and

-(u)lo: 6). In this dissertation, I used the first type of outcome. Finally, I em-

ployed the t-distributed Stochastic Neighbor Embedding (t-SNE; Maaten and

Hinton, 2008) for dimension reduction of classification embeddings from the

postposition by each epoch (see more details of t-SNE in Section 4.3.1).

The entire model training/testing is conducted 1,600 times (32 batches *

50 epochs), starting from the initial model with the zero value of gradients to

an optimal model with updated values involving the model through forward-

and back-propagation (cf., Xu et al., 2020). Loss values, which are the differ-

ence between outcomes from a BERT model in a particular epoch and real

data, decreased as the values consisting of the model kept updating. I ob-

1The entire code for BERT training that I developed is available at:
https://github.com/seongmin-mun/PhD_dissertation/tree/main/Python/BERT

161

https://github.com/seongmin-mun/PhD_dissertation/tree/main/Python/BERT


7.3. VISUALIZATION: POSTBERT

tained the two-dimension distribution data in each epoch as the outcome of

the BERT training. I used these in the visualization to see how BERT recog-

nizes the polysemy involving Korean adverbial postpositions in each epoch.

7.3 Visualization: PostBERT

BERT is known to achieve a state-of-the-art accuracy when it is fine-tuned

for supervised tasks (e.g., Dai and Le, 2015, Peters et al., 2018, Radford et al.,

2018). However, it is not fully understoodwhy this is so (e.g., Clark et al., 2019,

Coenen et al., 2019). Clark et al. (2019) investigated this matter by analyz-

ing the attention mechanisms of the pre-trained BERT model. In their study,

they used attention maps to see how the BERT’s attention heads exhibit pat-

terns by such changes as delimiter tokens, positional offsets. They found

that these attention heads attended to the direct objects of verbs, determin-

ers of nouns, and objects of prepositions with remarkably high accuracy.

Coenen et al. (2019) addressed this matter by visualizing the sentence-level

representations of the BERTmodel. They investigated how BERT recognizes

word meanings through the visualization of the sentence-level embeddings

(Figure 7.3), and found that it could distinguish the different meanings of the

word ‘die’ in several contexts. This means that BERT recognized the exact

intended meaning of ‘die’ in each context.

162



CHAPTER 7. METHODOLOGICAL SET-UP: BERT

Figure 7.3: The visualization of the sentence-level embeddings for the word
‘die’ in different contexts (adapted from Coenen et al. (2019))

7.3.1 Tasks and design objectives

With the advantages of visualization (see Section 4.3) and inspiration from

the work by Coenen et al. (2019), I designed a BERT-based visualization sys-

tem by specifying tasks and objectives as follows:

Task 1: Visually represent different clusters by the epochs (i.e., learning

step) of the postposition types.

Design Objective: Design options for users to select each postposition on

the left side of the visualization system. Also create a play button and slider

at the bottom of the main visualization view in order to see the changes of

clusters by epoch.

163



7.3. VISUALIZATION: POSTBERT

Task 2: Identify the details of each sentence in the cluster (e.g., the index

number of a sentence, the intended function of postposition in the sentence,

the raw sentence, the POS-tagged sentence).

Design Objective: Add pop-up views on the upper side of the main visu-

alization view in order to provide the details of each sentence when the user

moves the cursor over the circle (i.e., each sentence).

Task 3: Represent the various information about the model performance,

such as overall accuracy, by-function accuracy, and loss rates.

Design Objective: Create two multi-line bar charts on the right side of vi-

sualization to see the change of the aforementioned model performance.

Task 4: Express the result of density clusters in each epoch, such as plots

of density cluster and number of clusters.

Design Objective: Provide a bar chart at the bottom right side of the visu-

alization system in order to present the number of clusters produced in each

epoch. Also create a density cluster view at the bottom left of the system to

present the clustering results according to the selected epoch.

7.3.2 System development

Considering the tasks and design objectives, I designed a visualization sys-

tem (available at: PostBERT) to see how my BERT model classifies the func-

tions of these postpositions in each epoch2. The visualization system was

developed in Java, JavaScript, HTML, and CSS environments. The process of

2More details of PostBERT is available at: https://github.com/seongmin-
mun/VisualSystem/tree/master/Major/PostBERT

164

https://seongmin-mun.github.io/VisualSystem/Major/PostBERT/index.html
https://github.com/seongmin-mun/VisualSystem/tree/master/Major/PostBERT
https://github.com/seongmin-mun/VisualSystem/tree/master/Major/PostBERT


CHAPTER 7. METHODOLOGICAL SET-UP: BERT

development was divided into three parts: (i) data processing, (ii) front-end,

and (iii) back-end. Each part of the process is similar to the previous visual-

ization system (see Section 4.3.3), but the data processing part is different.

In data processing, I created four types of data using Java programming.

The first data contains t-SNE outcomes that I obtained from the BERT clas-

sification. This data is connected with the distributional map for sentence-

level embeddings to show the clusters between sentences. The second data

includes raw sentences of the test set that represents each sentence in the

distributional map. This data is merged with the first data to show details

of each sentence such as an index of the selected sentence, the intended

function used in the sentence, and the original sentence. The third data con-

tains various information about the model performance: overall accuracy,

by-function accuracy, and loss rates in the classification task by epoch. This

data is used in the multi-line charts of the visualization system. The final

data includes the results from the density-based cluster in order to show the

number of clusters produced by the BERTmodel. This data is connectedwith

the bar chart for density cluster. After the data processing, these JSON data

were stored in the database.

For the front-end and back-end part of the visualization, I used several

frameworks such as Bootstrap, Media queries, D3.js, and jQuery in order to

make visualization system more interactivly (see more details of the front-

end and back-end part in Section 4.3.3).

165



7.3. VISUALIZATION: POSTBERT

7.3.3 Interface of visualization system

For the interface of the visualization system, I propose three views to effi-

ciently explore how BERT recognizes the word-level polysemy of the Korean

adverbial postpositions. Each view presents the different outcomes related

to BERT: sentence-level embedding, accuracy loss with respect to its perfor-

mance, and results of density cluster (see Section 8.3).

Figure 7.4: The visualization system: the overall interface (1) and the main
view (2)

166



CHAPTER 7. METHODOLOGICAL SET-UP: BERT

Figure 7.4 (1) shows the interface of the developed visualization system.

(a) provides options to select the postpositions and checkboxes to high-

light and tracking interesting sentences according to the index number or

the function of these postpositions. (b) shows a distributional map of the

sentence-level embeddings reduced to two dimensions using t-SNE. It also

allows users to see the details of each sentence (represented as points)

when the users hover their cursor over the circle. This allows the user to

check the information such as an index number of the selected sentence,

the intended function of the postpositions used in the sentence, and the raw

sentence. At the bottom of (b), there is a play button to see the changes of

the BERT outcome in each epoch. (c) shows two different types of BERT:

(i) multi-line charts for its performance and (ii) a bar chart for density clus-

ter. The multi-line charts on the right side of the visualization system (Figure

7.4 (c)) allow users to see the BERT performance such as overall accuracy,

by-function accuracy, and loss in relation to the classification task by epoch

(i.e., learning). This view also provides a hovering function to see the detailed

score of each line in each epoch. The bar chart at the bottom of the right side

of the visualization system (Figure 7.4 (c)) is to present the number of clus-

ters indicating how BERT classified the sentences by their function in each

epoch. This bar chart also provides a hovering function to see the actual

number of clusters in each epoch.

7.4 Summary of the Chapter

The performance of the two word-level embedding models (PPMI-SVD and

SGNS) resulted in an issue that the accuracy rate was modulated by the size

167



7.4. SUMMARY OF THE CHAPTER

of training corpora containing specific functions of the postpositions. As

a remedy for this, I employed Bidirectional Encoder Representations from

Transformer (BERT) (Devlin et al., 2018) to classify the functions of the post-

positions.

Due to how the BERT model works, to develop a classification model,

this study made an algorithm for training by using a hand-coded corpus in

a slightly different manner. After training the model, I developed a visualiza-

tion system to see how BERT classifies the function of the postpositions in

each epoch and how the accuracy rate varies by each function by using 2-

dimensional distribution data of the testing set.

The visualization systemhas several options to use and can identify each

sentence-level embedding by using a reduced two-dimensional t-SNE plot.

It also shows the user more information about the model performance (i.e.,

overall accuracy, by-function accuracy, and loss rates) and the results of den-

sity clustering.

In conclusion, I developed a classification model by using BERT. I then

developed a visualization system to see how the BERT model classifies the

functions of the postpositions in each epoch. The following chapter will ex-

plain the findings of the BERT classification model and BERT-based visual-

ization system.

168



Chapter 8
Results: sentence-level embedding

This chapter reports the BERT model performance of classifying the func-

tions of postpositions, starting from my hypotheses on the research ques-

tions, to by-postposition accuracy, and the results of the BERT-based visual-

ization system.

• Research question 1: How does the number of functions involving a

postposition affect the model performance of BERT?

• Research question 2: How the asymmetric proportions of the functions

in each postposition affect the model performance?

• Research question 3: How does the BERTmodel classify sentences for

each postposition based on function as the epoch proceeds?

8.1 Hypotheses

Hypotheses were made with respect to the three research questions about

my classificationmodels and the visualization results that showedhowBERT

169



8.1. HYPOTHESES

model understand word-level polysemy of the three Korean adverbial post-

positions (-ey, -eyse, and -(u)lo).

• Hypothesis 1: The accuracy of the classification should be inversely

proportionate to the number of functions of a postposition.

The word-level embedding models that I investigated (see Chapter 5)

showed that there was an inverse relationship between the classification ac-

curacy and the number of functions. Given this finding, I predicted that the

classification models will be influenced by the number of functions that a

postposition has.

• Hypothesis 2: The accuracy of the classification should vary depending

on the corpus size of each function.

The previous results of word-level embedding models showed that the

classification accuracy is affected by the corpus size of the functions that

account for a larger portion of the total corpus size. I thus predicted that this

should also influence the accuracy of BERT.

• Hypothesis 3: The accuracy of the classification should be higher in

larger epochs.

The previous studies that investigate various inquiries on language by

using BERT recommended setting the epoch size small (e.g., Reimers and

Gurevych, 2019, Reimers et al., 2019, Sun et al., 2019, Warstadt and Bowman,

2020). However, they did not explain clearly explain why the epoch should

be set as a small size. Contrarily, I predicted that the classification accuracy

will improve as the epoch increases, considering that epoch is the number

of learning steps.

170



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

8.2 Model performance: Classification

8.2.1 Overall accuracy by the BERT model

Figure 8.1 shows the classification accuracy of the BERT model by epoch

and by postposition.

Figure 8.1: Classification accuracy by epoch and by postposition

The result showed that the BERTmodel performed better for -eyse, which

has only two functions (SRC and LOC), than for the other two postpositions

(-ey and -(u)lo). The average classification accuracy for -ey, -eyse and -(u)lo

were around 0.815, 0.898 and 0.813, respectively. Statistical analysis of pair-

wise comparisons (Table 8.1) further showed that the model performance in

-eyse was significantly better than in the other two postpositions.

171



8.2. MODEL PERFORMANCE: CLASSIFICATION

Table 8.1: Statistical comparison of each postposition: Two-sample t-test

Comparison |t| p

-ey vs. -eyse 22.588 < .001***
-ey vs. -(u)lo 0.533 .594
-eyse vs. -(u)lo 28.301 < .001***

Note. *** < .001

8.2.2 Overall accuracy by postpositions: -ey, -eyse, and -(u)lo

-ey

Figure 8.2 shows the classification accuracy in the BERT model for -ey. It

was 0.682 in epoch one and increased to 0.824 in epoch 50, indicating that

it increased as the epoch progressed. The highest accuracy was recorded in

epoch 18 (0.837) and the lowest in epoch one (0.682).

Figure 8.2: By-epoch accuracy for the BERT model: -ey

172



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

The performance of the BERT classification model for -ey varied depend-

ing on its function, as shown in Figure 8.3 and Table 8.2. The average clas-

sification accuracy was the highest in LOC (0.947) and the lowest in AGT

(0.041); the other functions yielded accuracy ranging from 0.911 to 0.076.

The results revealed three trends. First, the functions CRT and LOC main-

tained high accuracy epoch after epoch. Second, four functions, GOL, EFF,

FNS, and THM, showed an increase in accuracy as the epoch proceeded.

The degree of increase was the largest in FNS (71%), followed by THM (69%),

then EFF (62%), and finally GOL (45%). Surprisingly, among these four func-

tions, FNS showed an accuracy of 0 in epoch one but increased to 0.711 in

epoch 27. Third, INS and AGT achieved low accuracy without improvement

(around 0.2).

173



8.2. MODEL PERFORMANCE: CLASSIFICATION

Figure 8.3: By-function accuracy curve for the BERT model: -ey

Note. Abbreviation: AGT = agent; CRT = criterion; EFF = effector; FNS = final
state; GOL = goal; INS = instrument; LOC = location; THM = theme

Table 8.2: By-function accuracy for the BERT model: -ey

Epoch
Classification accuracy

AGT CRT EFF FNS GOL INS LOC THM
1 0 0.876 0 0 0.044 0 0.911 0.198
10 0 0.930 0.433 0.578 0.313 0.133 0.954 0.688
20 0.067 0.897 0.533 0.533 0.186 0.067 0.960 0.916
30 0.067 0.915 0.378 0.444 0.328 0.067 0.948 0.718
40 0.067 0.892 0.489 0.467 0.326 0.133 0.942 0.768
50 0.067 0.912 0.411 0.389 0.409 0.1 0.940 0.683

174



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

-eyse

Figure 8.4 shows the classification accuracy in the BERT model for -eyse. It

was 0.863 in epoch one and increased to 0.916 in epoch 50, indicating that

it increased as the epoch progressed.

Figure 8.4: By-epoch accuracy for the BERT model: -eyse

The performance of the BERT classification model for -eyse varied de-

pending on its function, as shown in Figure 8.5 and Table 8.3. The average

classification accuracy was the highest in LOC (0.948) and the lowest in SRC

(0.535). LOC maintained a high classification accuracy from epoch one. It

showed an accuracy range from 0.916 to 0.98 without much change even

when the epoch progressed. In contrast, the classification accuracy of SRC

increased as the epoch proceeded. It showed a low classification accuracy

of 0.174 in epoch one but increased to 0.725 in epoch 41.

175



8.2. MODEL PERFORMANCE: CLASSIFICATION

Figure 8.5: By-function accuracy curve for the BERT model: -eyse

Note. Abbreviation: LOC = location; SRC = source

Table 8.3: By-function accuracy for the BERT model: -eyse

Epoch
Classification accuracy

LOC SRC
1 0.980 0.174
10 0.939 0.559
20 0.937 0.651
30 0.949 0.464
40 0.963 0.523
50 0.960 0.598

-(u)lo

Figure 8.6 shows the classification accuracy in the BERT model for -(u)lo. It

was 0.704 in epoch one and increased to 0.821 in epoch 50, indicating that it

176



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

increased as the epoch progressed. The accuracy was the highest in epoch

19 (0.829) and the lowest in epoch one (0.704).

Figure 8.6: By-epoch accuracy for the BERT model: -(u)lo

The performance of the BERT classification model for -(u)lo varied de-

pending on its function, as presented in Figure 8.7 and Table 8.4. The aver-

age accuracy was the highest in DIR (0.938) and the lowest in LOC (0.106);

the other functions yielded accuracy ranging from 0.815 to 0.278. The by-

function classification accuracy of this postposition is categorized into two

types: one group (LOC and EFF) increased gradually from zero, and the other

group (CRT, DIR, FNS, and INS) started above zero. Considering that LOC and

EFF are the functions that account for a smaller portion of the total corpus

size, this result may be interpreted that BERT could recognize the less occur-

ring functions as the epoch (i.e., learning) progressed.

177



8.2. MODEL PERFORMANCE: CLASSIFICATION

Figure 8.7: By-function accuracy curve for the BERT model: -(u)lo

Note. Abbreviation: CRT = criterion; DIR = direction; EFF = effector; FNS = final
state; INS = instrument; LOC = location

Table 8.4: By-function accuracy for the BERT model: -(u)lo

Epoch
Classification accuracy

CRT DIR EFF FNS INS LOC
1 0.476 0.943 0 0.764 0.477 0
10 0.83 0.918 0.367 0.771 0.835 0.1
20 0.694 0.951 0.3 0.838 0.709 0.044
30 0.708 0.941 0.333 0.811 0.752 0.05
40 0.694 0.927 0.267 0.855 0.777 0.05
50 0.692 0.957 0.4 0.836 0.723 0.1

178



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

8.2.3 Correlation between corpus size and classification ac-

curacy

The word-level embedding models (PPMI-SVD and SGNS) have shown that

the classification accuracy of the functions that account for a larger portion

of the total corpus size affects the accuracy of the model for each post-

position (Section 5.2.3). Hence, I conducted the same correlation analysis

of postposition to see if the same phenomenon also occurred with BERT.

For this task, the Pearson Correlation was used to calculate the correlation

score between the mean accuracy of the BERT model and of each function

for these postpositions.

-ey

Among the eight functions of -ey, LOC and CRT occur most frequently in the

corpus data. However, as shown in Table 8.5, in the BERT model, the mean

accuracy of the model and that of each function had no correlation for these

functions. I also found a high correlation with the functions that accounted

for a smaller portion of the total corpus size. These results are contrary to

those in the word-level embedding model and can be interpreted that the

classification accuracy of the BERT model was affected less by the corpus

size of each function of -ey.

179



8.2. MODEL PERFORMANCE: CLASSIFICATION

Table 8.5: Correlation between the accuracy of the BERT model and of each
function for -ey by epoch

Function Corpus size Correlation
LOC 1,780 -0.218
CRT 1,516 0.115
THM 448 0.708
GOL 441 0.691
FNS 216 0.733
EFF 198 0.553
INS 69 0.469
AGT 47 0.429

Note. Abbreviation: AGT = agent; CRT = criterion; EFF = effector; FNS = final

state; GOL = goal; INS = instrument; LOC = location; THM = theme

-eyse

LOCaccounts formore than 80%of the occurrences in the total corpus. How-

ever, as shown in Table 8.6, the overall accuracy has more correlation with

SRC than LOC. This indicates that the BERTmodel was not strongly affected

by the corpus size.

Table 8.6: Correlation between the accuracy of the BERT model and of each
function for -eyse by epoch

Function Corpus size Correlation
LOC 4,206 0.283
SRC 647 0.593

Note. Abbreviation: LOC = location; SRC = source

180



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

-(u)lo

Of the six functions of -(u)lo, FNS and DIR account for the largest portion

of occurrence in the total corpus. However, as presented in Table 8.7, the

correlation score was the highest in EFF (0.581), which has the smallest por-

tion, and the lowest in DIR (0.142) which has the second largest portion. This

result is consistent with the results shown by -ey and -eyse. This further in-

dicates that the BERT model was not strongly affected by the corpus size.

Table 8.7: Correlation between the accuracy of the BERT model and of each
function for -(u)lo by epoch

Function Corpus size Correlation
FNS 1,681 0.505
DIR 1,449 0.142
INS 739 0.499
CRT 593 0.255
LOC 158 0.151
EFF 88 0.581

Note. Abbreviation: CRT = criterion; DIR = direction; EFF = effector; FNS = final

state; INS = instrument; LOC = location

Contrary to the results of the word-level embedding models, the BERT

model was not particularly affected by the corpus size. This is because the

BERT model assigns each word to a vector that is sensitive to the context in

which it appears. This is a major difference from the traditional word-level

embedding models. In addition, the BERT model operates on the basis of

the pre-trained model, which means that it already has enough information

on the target language.

181



8.3. VISUALIZATION SYSTEM: CLUSTERS OF SENTENCE-LEVEL EMBEDDINGS

8.3 Visualization system: clusters of sentence-level

embeddings

The visualization system aimed to identify the sentence-level embeddings

interactively in order to see how BERT classified the functions of the post-

positions in each epoch. To carry this out, I selected two-dimensional t-SNE

data of testing (the number of sentences of each postposition; -ey: 467, -

eyse: 484, and -(u)lo: 467).

To statistically confirm changes of the sentences containing different

functions of each postposition according to each epoch, I performed a clus-

ter analysis that allows the identification of groups that share common char-

acteristics and the relationship between data (Romersburg, 1984). Compar-

ing the advantages of clustering (see Section 5.3.1) and of density-based

clustering (Sander et al., 1998), I chose to use density-based clustering through

R (R version 3.6.2; R Core Team, 2019), by adapting dbscan package (Hahsler

et al., 2019). I recommend seeing the following findings while demonstrating

the visualization system together 1.

1PostBERT, the second visualization system is available at: https://seongmin-
mun.github.io/VisualSystem/Major/PostBERT/index.html

182

https://www.r-project.org/contributors.html
https://seongmin-mun.github.io/VisualSystem/Major/PostBERT/index.html
https://seongmin-mun.github.io/VisualSystem/Major/PostBERT/index.html


CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

8.3.1 -ey

Figure 8.8 showshowmany clusterswere generated as the epochprogressed.

When the epoch was one, all of the sentences were divided into two groups.

However, as the epoch progressed, the sentences were divided into three

in epoch seven, four in epoch 12, and five in epoch 15. The details of the

sentence-level embedding outcomes for -ey of these epochs are shown in

the following Figures (Figure 8.9 to 8.12).

Figure 8.8: Number of density clusters in each epoch: -ey

Figure 8.9 shows the distributional map for -ey in epoch one. BERT clas-

sified the sentences into two groups, CRT and LOC, which are the functions

that have a larger portion of the total corpus size. This means that it recog-

nized LOC and CRTwell in the early step of the epoch (i.e., learning). This can

a reason why the BERTmodel showed a high classification accuracy only for

LOC (0.911) and CRT (0.876) at epoch one, as shown in Figure 8.3.

183



8.3. VISUALIZATION SYSTEM: CLUSTERS OF SENTENCE-LEVEL EMBEDDINGS

Figure 8.9: The distributional map for -ey in epoch one184



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

Figure 8.10 shows the results of -ey when the epoch progressed to seven.

BERT classified the sentences into three groups. The first was a group of

sentences gathered around the LOC. Most of the functions for -ey contained

in the sentences were LOC, however, at the bottom of this group, there were

a number of sentences that functioned as GOL. The second was a group

of sentences including THM, FNS, and EFF. In a density cluster, the three

functions are shown to be one group, but in visualization, each is divided into

an individual group. The final was a group of sentences gathered aroundCRT,

which was recognized as its own group since the epoch was one.

185



8.3. VISUALIZATION SYSTEM: CLUSTERS OF SENTENCE-LEVEL EMBEDDINGS

Figure 8.10: The distributional map for -ey in epoch seven

Figure 8.11 shows the results of -ey when the epoch progressed to 12.

BERT classified the sentences into four groups. Particularly, THM was di-

vided from EFF and FNS and made a separate group.

186



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

Figure 8.11: The distributional map for -ey in epoch 12

187



8.3. VISUALIZATION SYSTEM: CLUSTERS OF SENTENCE-LEVEL EMBEDDINGS

Figure 8.12 shows the results of -ey when the epoch increased to 15.

BERT classified the sentences into five groups. GOL was divided from the

LOC group and created a separate group. However, AGT and INS, which ac-

count for a smaller portion of the total corpus size, did make an individual

group. This indicates that AGT and INS are very hard to be understood as

distinguishable functions of -ey, even for BERT.

188



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

Figure 8.12: The distributional map for -ey in epoch 15

189



8.3. VISUALIZATION SYSTEM: CLUSTERS OF SENTENCE-LEVEL EMBEDDINGS

8.3.2 -eyse

Figure 8.13 showshowmany clusterswere created as the epochs progressed.

When the epoch was one, the number of clusters was one. However, when

the epoch was nine, there were two clusters. The details of the sentence-

level embedding outcomes at these epochs are shown in the following Fig-

ures (Figure 8.14 and 8.15).

Figure 8.13: Number of density clusters in each epoch: -eyse

Figure 8.14 shows the distributional map for -eyse in epoch one. BERT

recognized all of the sentences as one group, whichmeans that it did not un-

derstand the differences between the functions. However, LOC was located

at the top of the group, and SRC at the bottom.

190



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

Figure 8.14: The distributional map for -eyse in epoch one

Figure 8.15 shows the results of -eysewhen the epoch progressed to nine.

BERT classified the sentences into two groups (LOC and SRC). From this

191



8.3. VISUALIZATION SYSTEM: CLUSTERS OF SENTENCE-LEVEL EMBEDDINGS

epoch onward, BERT often showed two groups.

Figure 8.15: The distributional map for -eyse in epoch nine

192



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

8.3.3 -(u)lo

Figure 8.16 shows how many clusters were generated for -(u)lo. When the

epoch was one, all of the sentences were grouped into one. However, as the

epoch progressed, the sentences were divided into three in epoch four, five

in epoch 12, and six in epoch 46. The distributional maps for -(u)lo of these

epochs are shown in the following Figures (Figure 8.17 and 8.20).

Figure 8.16: Number of density clusters in each epoch: -(u)lo

Figure 8.17 shows the distributional map for -(u)lo when the epoch was

one. BERT classified all of the sentences into one group. However, DIR was

located at the bottom right of cluster, while FNS at the top.

193



8.3. VISUALIZATION SYSTEM: CLUSTERS OF SENTENCE-LEVEL EMBEDDINGS

Figure 8.17: The distributional map for -(u)lo in epoch one

Figure 8.18 shows the results of -(u)lo when the epoch increased to four.

BERT classified the sentences into three groups. The firstwas a group of sen-

tences gathered around DIR. The secondwas a group of sentences including

FNS, INS, and EFF. The final was a group of sentences gathered around CRT.

194



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

In this case, CRT was distinguished from the other functions since epoch

four. This can be the reason to explain why the classification accuracy of

CRT increased gradually from epoch one (0.476) to four (0.72).

Figure 8.18: The distributional map for -(u)lo in epoch four

195



8.3. VISUALIZATION SYSTEM: CLUSTERS OF SENTENCE-LEVEL EMBEDDINGS

Figure 8.19 show the results of -(u)lo when the epoch increased to 12.

BERT classified the sentences into five groups. EFF and INS were divided

from the FNS group and each created a separate group. Considering that EFF

accounts for a smaller portion of the total corpus size, it can be interpreted

that BERT can recognize the functions as the epoch progressed, even for the

less occurring functions.

196



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

Figure 8.19: The distributional map for -(u)lo in epoch 12

197



8.3. VISUALIZATION SYSTEM: CLUSTERS OF SENTENCE-LEVEL EMBEDDINGS

Finally, Figure 8.20 shows the results of -(u)lowhen the epoch progressed

to 46. BERT classified the sentences into six groups, which is the same num-

ber of functions that -(u)lo has. However, the newly generated group, LOC,

was created by collecting a few sentences from all the different functions.

As shown in Figure 8.20 (2), most of the sentences (11 out of 15) belonged

to the DIR group.

198



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

Figure 8.20: The distributional map for -(u)lo in epoch 46

199



8.4. DISCUSSION OF THE CHAPTER

8.3.4 Interim summary of visualization results

The visualization system interactively showed the results by the options (e.g.,

postposition types, epochs) and showed the relation between sentences. Us-

ing this system, I investigated the third research question concerning how

the BERT model recognizes the polysemy involving Korean adverbial post-

positions in each epoch. Overall, the result showed that the model tended

to demonstrate more distinctive clustering as the epoch progressed, with a

high level of coherence for specific function. For instance, in epoch 12 for

-(u)lo (Figure 8.19), a cluster of EFF (the function with low-frequency of oc-

currences in the data) emerged. This finding further supports the idea that by

using sufficient epochs, the BERTmodel can identify functions at a satisfac-

tory level, even though they are relatively infrequent. In addition, as shown in

Figure 8.20, LOC could not form a designated cluster in the end. Many of the

instances (11 out of 15) belonged to the DIR group. This is because of the low

frequency of LOC in the data and the semantic closeness between DIR and

LOC—they are both related to a location and are often difficult to distinguish

one from the other.

8.4 Discussion of the Chapter

In this chapter, I described the model performance in the classification of

the functions of the postpositions -ey, -eyse, and -(u)lo. Below are the three

major findings that could answer the research questions.

First, the higher classification accuracy was obtained when the postpo-

sition has a fewer number of functions. The previous word-level embedding

200



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

models have shown that the different numbers of functions (e.g., two for

-eyse, six for -(u)lo, and eight for -ey) affect the classification accuracy. Sim-

ilar to these models, BERT also showed that the classification accuracy is

affected by the number of functions that the postposition has. The average

accuracy was 0.815 in -ey, 0.898 in -eyse, and 0.813 in -(u)lo. Nevertheless,

considering that the word-level embedding models have shown large differ-

ences of model performance between each postposition (e.g., PPMI-SVD:

-ey (0.534), -eyse (0.773), -(u)lo (0.567); SGNS: -ey (0.204), -eyse (0.693), -

(u)lo (0.368)), it can be interpreted that the BERT model is less affected by

the number of functions that the postposition has.

Second, the BERT model was not influenced by the corpus size of each

function that a postposition has, which is the opposite of the results shown

by word-level embedding models and the second Hypothesis (see Section

8.1). Considering that the BERTmodel assigned each word to a vector based

on the context information andoperated on the basis of the pre-trainedmodel,

it had much more information on the attested language than the word-level

embeddingmodels. For this reason, it was able to recognize the functions of

each postposition with less influence of corpus size on model performance.

In addition, it considers much more contextualized information (i.e., token

embeddings, segment embeddings, andposition embeddings) thanword-level

embedding models, which use only the morphological information of the

word. This can also be a reason why BERT was less affected by the corpus

size.

Third, as the epoch (i.e., learning) progressed, BERT could recognize the

functions of each postposition, evenwhen the functions account for a smaller

portion of the entire corpus. This finding is contrary to the results shown by

201



8.4. DISCUSSION OF THE CHAPTER

word-level embedding models but is consistent with Hypothesis 3 (see Sec-

tion 8.1). One crucial issue of word-level embedding models was that the

accuracy was low for the classification of the functions that account for a

smaller portion of the total corpus size. However, when the epoch was pro-

gressed, BERT could recognize the differences between the functions. This

finding further supports the idea that by using sufficient epochs, the BERT

model can identify functions at a satisfactory level, even though they occur

relatively infrequently. However, despite this advantage with regards to the

data size, the BERT model still seems to be subject to the extremely low-

frequent items and/or the semantic closeness between the items, limiting

its performance in the given task to some extent.

In addition to the result of BERT, the model also showed high classifica-

tion accuracy. The average classification accuracy for -ey, -eyse and -(u)lo

were around 0.815, 0.898, and 0.813, respectively. This is a very high clas-

sification accuracy, considering that for the same tasks, previous studies

reported the average accuracy ranging from 0.882 (Kang and Park, 2003)

to 0.623 (Bae et al., 2014) and the word-level embedding model used in this

dissertation showed the average classification accuracy of 0.550. Overall,

the BERT model solved the problems shown by the word-level embedding

models in a task to identify the functions of each postposition. Furthermore,

I found that the BERTmodel wasmore suitable for the task of classifying the

functions of the postposition resulting in a very high classification accuracy.

202



CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

8.5 Summary of the Chapter

In this chapter, I reported the findings of the classification models and visual

inspections, starting from my hypotheses on the research questions.

From the results of model performance and visualization, I found three

major findings. First, the BERT model is affected by the number of functions

that the postposition has. However, the gaps ofmodel performance between

each postposition are smaller than word-level embedding models. Second,

the classification accuracy of the BERT model was less affected by the cor-

pus size, which is different from the performance of the word-level embed-

ding models. Third, when the epoch progressed, the BERT model could rec-

ognize more functions of the postposition, including the one that account

for a smaller portion of the corpus size. Moreover, the BERT model showed

higher classification accuracy than previous studies including the word-level

embedding models used for the same task in this dissertation.

In the following chapter, I will discuss the interpretations of the threeword

embedding models with regards to the research questions (see Chapter 4

and Chapter 7).

203





Chapter 9
Discussion

This chapter discusses the interpretations of the findings of the word-level

embedding models (see Chapter 5), and sentence-level embedding model

(see Chapter 8), in relation to the research questions (see Chapter 4 and

Chapter 7). In addition, it also discusses the advantages and limitations of

each model for resolving word-level polysemy of Korean adverbial postposi-

tions.

9.1 Interpretations of word-level embedding mod-

els: PPMI-SVD and SGNS

The research questions in Chapter 4 are re-stated as follows:

• Research question 1: How does the number of functions a postposition

has, affect classification performance for each word-level embedding

model?

• Research question 2:What is the role of the context window in the clas-

sification performance of each word-level embedding model?

205



9.1. INTERPRETATIONS OF WORD-LEVEL EMBEDDING MODELS: PPMI-SVD AND SGNS

• Research question 3: How does the cluster of postpositions and their

co-occurring words change as the environments of word-level embed-

ding change?

9.1.1 The number of functions in each postposition

For first research question, I made a hypothesis with respect to the number

of functions in each postposition as below:

• Hypothesis: The accuracy of the classification should be inversely pro-

portionate to the number of functions of a postposition.

In previous studies focusing on the same three adverbial postpositions, it

was reported that the multiple functions of one postposition delivers recog-

nition and ambiguous usage (e.g., Choo and Kwak, 2008, Sohn, 1999). As

stated in Chapter 2, the three postpositions have different numbers of func-

tions (e.g., two for -eyse, six for -(u)lo, and eight for -ey). Based on this fact, I

predicted that if the postposition hasmore functions, the classificationmod-

els would produce lower accuracy. This prediction was investigated in Chap-

ter 5 by exploring the classification performance of word-level embedding

models with each postposition.

The results proved the prediction to be true as there was an inverse re-

lation between the classification accuracy and the number of functions of

each postposition. For instance, the PPMI-SVD model showed that the clas-

sification accuracy was the highest in -eyse (0.773) and the lowest in -ey

(0.534); -(u)lo showed classification accuracy of 0.567. Similar to the PPMI-

SVD model, -eyse outperformed the other postpositions (e.g., -ey (0.204),

-eyse (0.693), -(u)lo (0.368)) in the SGNSmodel, which is consistent with the

206



CHAPTER 9. DISCUSSION

Hypothesis.

I further explored the relationships between corpus size and classifica-

tion accuracy by conducting a correlation analysis by postposition. This is

because a phenomenon was found, that the average model performance

was similar to the accuracy patterns of the functions that occupy a larger

portion of the total corpus size. As a result of my investigation, I found that

this was true for two word-level embedding models. For instance, as shown

in Table 5.3 (i.e., correlation between two models and each function for -ey),

the mean accuracy of the two models were highly correlated to the mean

accuracy of the two most frequent functions, LOC (e.g., PPMI-SVD: 0.983;

SGNS: 0.797) and CRT (e.g., PPMI-SVD: 0.907; SGNS: 0.854). With regard to

the relationship between the corpus size and model performance, previous

research has reported that the PPMI-SVD model used the word-word matrix

in the process of converting words to vectors, and therefore, was sensitive

to the token frequency (Jurafsky and Martin, 2019). Furthermore, the SGNS

model used one-hot encoding for the same process, and therefore relied on

the type frequency (Mikolov et al., 2013a). Considering that both the token

frequency and the type frequency are sensitive to the corpus size (e.g., Ju-

rafsky and Martin, 2019, Mikolov et al., 2013a), it can be implied that both

word-level embedding models are affected by corpus size.

207



9.1. INTERPRETATIONS OF WORD-LEVEL EMBEDDING MODELS: PPMI-SVD AND SGNS

9.1.2 The role of context window size

The second research question was represented as a hypothesis regarding

the role of the context window size as below:

• Hypothesis: The accuracy of the classification should be higher in smaller

window sizes.

The context window size is a range of words surrounding a target word,

which affects the determination of the characteristics of the word (Lison

and Kutuzov, 2017). Previous studies have shown that the smaller windows

work better for syntactic representation and the larger windows contribute

more to semantic representation (e.g., Jurafsky andMartin, 2019, Levy et al.,

1999). Moreover, they have shown the advantage of smaller window size in

addressing word-level polysemy (e.g., Bullinaria and Levy, 2012, Levy and

Goldberg, 2014). I thus predicted that the two word-level embedding mod-

els will perform better in smaller context window sizes. This prediction was

investigated in Chapter 5 by manipulating the context window size of word-

level embedding models.

I found that the twoword-level embeddingmodels had performances that

varied from each other. For instance, the PPMI-SVD model obtained high

classification accuracy at larger window sizes. However, the SGNS model

obtained low classification accuracy, regardless of the window size in the

case of -ey and -(u)lo, but high classification accuracy for -eyse at larger win-

dow sizes. These results were contrary my hypothesis. Considering that the

larger windows contribute more to semantic representation (e.g., Jurafsky

and Martin, 2019, Levy et al., 1999), two word-level embedding models may

perform more semantically than syntactically.

208



CHAPTER 9. DISCUSSION

9.1.3 The changes in the relationship between postposition

and their co-occurring words

Based on the third research question, Imade a hypothesis about the changes

in the relationship between the postpositions and their co-occurring words

as follow:

• Hypothesis (on hyperparameters): The clusters and their co-occurring

words should vary depending on the environments of word-level em-

bedding (2 models * 3 postpositions * 10 window sizes).

Previous studies have shown different embedding results depending on

themodels, windowsizes, or corpus used in the study based on their purpose

(e.g., Bullinaria and Levy, 2007, 2012, Hilpert, 2016, Levy and Goldberg, 2014,

Turney and Pantel, 2010). Considering this fact, I assumed that the twoword-

level embedding models would show different embedding results based on

the environments (2 models * 3 postpositions * 10 window sizes). This as-

sumption was explored in Chapter 5 by developing a visualization system to

see the changes in the relationship between the postpositions and their co-

occurring words by the environments of the word-level embedding models.

To statistically investigate the changes, I conducted a series of cluster

analysis by using density-based clustering (Sander et al., 1998). As a result

of this exploration, I found that the cluster was not changed much by the

environments of word-level embedding models. The density clusters of the

two models were gathered into one or two clusters in the end. However,

there were a few different points between the two models. For example,

in the PPMI-SVD model, the words that were used most frequently in the

corpus were located in the center of the cluster. On the other hand, in the

209



9.1. INTERPRETATIONS OF WORD-LEVEL EMBEDDING MODELS: PPMI-SVD AND SGNS

SGNS model, the words were distributed rather evenly, regardless of word

frequency. This was because the PPMI-SVD model worked based on the to-

ken frequency and the SGNS model worked based on type frequency (e.g.,

Jurafsky and Martin, 2019, Mikolov et al., 2013a).

In addition, I investigated the relationships between each postposition

and their surrounding words by using a visualization system. Through this, I

found that there were two different types of relationships between the partic-

ular postposition and its co-occurring words. First, there was a word group

that appeared only when the postposition was used as a specific function.

The words in this group did not appear when this postposition was used

as another function. For example, when the postposition -ey was used with

the function THM (i.e., theme), it was found in Figure 5.19 that there was a

strong relationship between it and kwanha/VV based on the cosine similarity

of 0.999. To seemore detail about this finding, I further explored the raw cor-

pus. I found that kwanha/VV appeared four times in total across the corpus.

Moreover, kwanha/VV only appeared when -ey was used with the function

THM (i.e., theme), as shown in Figure 9.1.

210



CHAPTER 9. DISCUSSION

Figure 9.1: Example of kwanha/VV in the raw corpus

Note. Abbreviation: ETM = Adnominal Changing Ending; JKB = adverbial
postposition; JKG = Genitive Case Marker; MAG = general adverb; NNG =
common noun; NNP = Proper Noun; NP = pronoun; NR = Numeral; THM =
Theme; VV = verb; XSN = A Noun Derivational Suffix

Second, therewas aword group that had a strong connection in language

use. These words appeared frequently regardless of which functions a post-

position was used. For instance, when -ey was used as the function of THM

(i.e., theme), there was a strong relationship between it and kukes/NP based

on the cosine similarity of 0.999 as shown in Figure 5.19. kukes/NP appeared

47 times in the total corpus. Unlike kwanha/VV, kukes/NP appeared not only

when -ey was used with the function THM (i.e., theme). kukes/NP appeared

when -ey was used as different functions (e.g., AGT: 3; CRT: 16; EFF: 3; FNS:

2; GOL: 2; INS: 4; LOC: 7; THM: 10).

211



9.1. INTERPRETATIONS OF WORD-LEVEL EMBEDDING MODELS: PPMI-SVD AND SGNS

9.1.4 Overall discussion of two word-level embedding mod-

els: PPMI-SVD and SGNS

In the above sections, I described the interpretations of the findings with re-

spect to the classification models and visualization systems, starting from

the hypotheses on three research questions. Through the investigation of

these hypotheses, I found three major findings.

First, the fewer functions the postposition had, the higher the classifica-

tion accuracywas obtained (see Section 9.1.1). Second, the PPMI-SVDmodel

obtained high classification accuracy at a larger window size (see Section

9.1.2). Third, the cluster was not changedmuch by the environments ofword-

level embedding (see Section 9.1.3).

Despite the implications of previous word-level embedding models, the

two models have remained limited and have showed unsatisfactory classifi-

cation performances (e.g., PPMI-SVD: -ey (0.534), -eyse (0.773), -(u)lo (0.567);

SGNS: -ey (0.204), -eyse (0.693), -(u)lo (0.368)). Moreover, they performed

well only when the target functions occurred very frequently in the data. This

is because of the technical nature of word-level embedding, which converts

a word into a single vector by using only its morphological information (e.g.,

Ethayarajh, 2019, Liu et al., 2019a).

To overcome these problems, I employed the Bidirectional Encoder Rep-

resentations from Transformer (BERT) (Devlin et al., 2018) to classify the

functions of the postpositions, which converts all of the words into differ-

ent vectors considering contextual information. In the following sections, I

present some discussion with respect to the findings of the BERT model.

212



CHAPTER 9. DISCUSSION

9.2 Interpretations of sentence-level embeddingmodel:

BERT

The research questions with respect to the BERT model in Chapter 7 are re-

stated as follows:

• Research question 1: How does the number of functions involving a

postposition affect the model performance of BERT?

• Research question 2: How the asymmetric proportions of the functions

in each postposition affect the model performance?

• Research question 3: How does the BERTmodel classify sentences for

each postposition based on function as the epoch proceeds?

9.2.1 The number of functions in each postposition

Regarding the first research question, I made a hypothesis with respect to

the number of functions as below:

• Hypothesis: The accuracy of the classification should be inversely pro-

portionate to the number of functions of a postposition.

As described in section 9.1.1, the word-level embedding models showed

that there was an inverse relation between the classification accuracy and

the number of functions. In addition, I found that the average model perfor-

mance was similar to the accuracy patterns of the functions that occupy a

larger proportion of the total corpus size. Considering this, I predicted that

the classification accuracy of the BERT model would be influenced by the

213



9.2. INTERPRETATIONS OF SENTENCE-LEVEL EMBEDDING MODEL: BERT

number of functions of a postposition. This prediction was investigated in

Chapter 8 by exploring the classification performance of the BERT model by

each postposition.

I found that there was an inverse relationship between the classification

accuracy and the number of functions that each postposition has. For in-

stance, the average classification accuracy was 0.815 for -ey, 0.898 for -eyse,

and 0.813 for -(u)lo. Considering the different number of functions (e.g., two

for -eyse, six for -(u)lo, and eight for -ey), it can be interpreted that the num-

ber of functions affected the classification performance of the BERT model.

However, unlike theword-level embeddingmodels that showed large gaps of

model performance between each postposition (e.g., PPMI-SVD: -ey (0.534),

-eyse (0.773), -(u)lo (0.567); SGNS: -ey (0.204), -eyse (0.693), -(u)lo (0.368)),

the BERT model was less affected.

9.2.2 The relationship between corpus size of each function

and model performance

The second research question was expressed as a hypothesis regarding the

relationship between the corpus size of each function and model perfor-

mance as below:

• Hypothesis: The accuracy of the classification should vary depending

on the corpus size of each function.

The results of two models showed that the classification accuracy is af-

fected by the corpus size of the functions that account for a larger proportion

of the total corpus size. I thus assumed that themodel performance of BERT

214



CHAPTER 9. DISCUSSION

would be similar to the accuracy patterns of these functions. This assump-

tion was investigated in Chapter 8 by conducting a correlation between the

mean accuracy of the BERT model and of each function of the three postpo-

sitions.

I found that the BERT model was not particularly affected by the corpus

size, which is contrary to the results of theword-level embeddingmodels. For

example, as shown in Table 8.5 (i.e., a correlation between BERT and each

function for -ey), the mean accuracy of the BERT model was not similar to

that of LOC (-0.218) and CRT (0.115). In addition, I found that the mean ac-

curacy was highly correlated to that of THM (0.708) and FNS (0.733), which

are the functions that account for a smaller portion of the total corpus size.

There are two reasons to support the fact that the BERT model performs

better than the word-level embedding models for resolving word-level poly-

semyof Korean adverbial postpositions. First, it assigned eachword to a vec-

tor on the basis of the context information, even if the formof thewords is the

same as each other. Second, it was able to recognize the functions of each

postposition, with less influence of corpus size on model performance. This

is due to the BERT model operating on the basis of the pre-trained model,

which means that it had enough information on the attested language.

215



9.2. INTERPRETATIONS OF SENTENCE-LEVEL EMBEDDING MODEL: BERT

9.2.3 The relationship between the model performance and

epoch

Imade a hypothesis about the changes in the relationship between themodel

performance and the epoch (i.e., learning step) as follow:

• Hypothesis: The accuracy of the classification should be higher in larger

epochs.

Previous studies have investigated various inquiries on language by us-

ing BERT. In these studies, they recommended setting smaller epoch sizes

for better BERT training (e.g., Reimers and Gurevych, 2019, Reimers et al.,

2019, Sun et al., 2019, Warstadt and Bowman, 2020). However, there was no

specific scientific reason but rather a technical reason with respect to bet-

ter implementation. To better understand why this is so, I investigated the

relationship between the model performance and the epoch by developing a

BERT-based visualization system. I predicted that the classification accuracy

would improve as the epoch progressed. This is due to the previous studies

that reported that the epoch size of BERT represents the learning step, and

that the larger learning steps have better model performance (e.g., Reimers

and Gurevych, 2019, Reimers et al., 2019, Sun et al., 2019, Warstadt and Bow-

man, 2020).

By examining the changes of sentence clusters by each epoch by us-

ing visualization, I found that the BERT model could recognize the functions

of each postposition as the epoch (i.e., learning) progressed. Furthermore,

this has revealedmore details sub-described as two findings. First, the BERT

model can identify functions at a satisfactory level, even if they are relatively

infrequent, by way of sufficient epochs. For instance, as shown in Figure 8.19

216



CHAPTER 9. DISCUSSION

(e.g., the distributional map for -(u)lo in epoch 12), EFF emerged as a distin-

guished cluster, though it is a function with low-frequency in the total corpus.

Second, the BERT model is subjective to the extremely low-frequent items

and/or semantic closeness between the items. For example, as shown in

Figure 8.20 (e.g., the distributional map for -(u)lo in epoch 46), LOC could

not form a designated cluster in the end. Many of the LOC instances (11 out

of 15) belonged to the DIR group. This is due to the semantic closeness be-

tween DIR and LOC, which means that they are often difficult to distinguish

one from the other.

9.2.4 Overall discussion of sentence-level embeddingmodel:

BERT

In this dissertation, I employed the BERT model in order to improve the lim-

itations of traditional word-level embedding models. From this, I had three

major findings. First, the BERT model is affected by the number of functions

that the postposition has. Second, the classification accuracy of was less af-

fected by the corpus size. Third, when the epoch progressed, it could recog-

nize more functions. Moreover, I found that the BERT model showed better

classification performance than previous studies, including the traditional

word-level embedding models that I investigated for the same task in this

dissertation.

In the following chapter, I will further describe the contribution of this

dissertation for the task to classify the polysemous Korean adverbial post-

positions -ey, -eyse, and -(u)lo.

217





Chapter 10
Conclusion

In this dissertation, I investigated computational accounts for interpreting

polysemy of the three representative Korean adverbial postpositions: -ey, -

eyse, and -(u)lo. In addition, I addressed the possible ways and limitations in

applying computational methods to language data involving multiple form-

function pairings in Korean.

10.1 Summary of major findings

I conducted this study in the following three steps: first of all, I identified the

specific the functions of each postposition based on the classification sys-

tem developed by the Sejong project and on previous studies on Korean ad-

verbial postpositions. -ey has eight major functions, with ‘location’ and ‘goal’

occupying the majority of the occurrences. -eyse has two functions, ‘source’

and ‘location’, and is used overwhelmingly more frequently than the others.

-(u)lo has six functions, with the top three functions, ‘final state’, ‘instrumen-

tal’, and ‘directional’, occupying more than 80 percent of the entire use.

Next, I made the classification/visualizationmodels, one by using a com-

219



10.1. SUMMARY OF MAJOR FINDINGS

bination of PPMI and SVD as a count-based model and the other by using

SGNS as a prediction-basedmodel with the basis of similarity-based estima-

tion. In general, I found that, if a postposition had fewer functions, the classifi-

cation model obtained a high classification accuracy. The PPMI-SVD model

achieved high classification accuracy when the window size was large, in-

dicating that for the best classification performance, it used the semantic

characteristics of the large window sizes more than the syntactic ones. In

contrast, the SGNS model showed low classification accuracy regardless of

the window sizes. Moreover, I found that the PPMI-SVD model was affected

by the corpus sizemore than the SGNSmodelwas. This is because thePPMI-

SVD model is sensitive to the token frequency of words, whereas the SGNS

model is sensitive to the type frequency of words. Through the visualization,

I found that (i) the clusters did not change considerably by the environments

of word-level embeddings, and (ii) there were the two types of co-occurring

words: the words that appeared frequently in the total corpus and the words

that only appeared when the postposition used as a specific function.

Despite these findings, there were two issues with the performance of

the two word-level embedding models. First, the models appeared to per-

formwell only when the target functions occurred very frequently in the data,

which means that the accuracy seemed to be affected by the corpus size of

each function. Second, themodel performance ofmymodelswas lower than

of the models proposed in the previous studies for the same classification

task. This is because of the technical nature of word-level embedding—they

are static in that a single vector is assigned to each word.

Finally, to overcome these limitations, I applied BERT to transform all of

the words into different vectors, while considering their contextual informa-

220



CHAPTER 10. CONCLUSION

tion for the same classification task. For the model training, I set the param-

eters such as batch size (32), epoch (50), seed (42), epsilon (0.00000008),

and learning rate (0.00002). Then, I fine-tuned the pre-trained model (i.e.,

KoBERT; Jeon et al., 2019) by using a training set for each postposition ac-

cording to 50 epochs (i.e., learning). For the classification task, the BERT

model obtained high classification accuracy: 0.815 for -ey, 0.898 for -eyse,

0.813 for -(u)lo. This was higher than the model performance of previous

studies and of the word-level embedding models I used. In addition, I found

that the BERTmodel was not particularly affected by the corpus size of each

function, which was contrary to the result shown by the word-level embed-

ding models. The reasons for this are that the BERT model assigned each

word a vector based on the contextual information and operated on the ba-

sis of the pre-trainedmodel with a large amount of corpus data. Through the

visualization, I found that the BERT model could recognize the functions of

each postposition as the epoch (i.e., learning) progressed, even if the func-

tions occupied a smaller portion of the total corpus size. This was also con-

trary to the results from the traditional word-level embedding models, which

are known to be affected considerably by the size of corpus. This indicates

that the BERTmodel can identify relatively infrequent functions at a satisfac-

tory level by way of sufficient epochs. Moreover, this suggests that it is able

to simulate how humans interpret the polysemy involving Korean adverbial

postpositions more appropriately than the word-level embedding models.

221



10.2. LIMITATIONS AND FUTURE WORKS

10.2 Limitations and future works

Despite these findings, this dissertation remains limited. I acknowledge some

limitations of this project as follows.

First of all, I focused only on three different Korean adverbial postposi-

tions that have word-level polysemy. However, according to the statistical

description in the Standard-Korean dictionary (1999), there are 361 postpo-

sitions in Korean. With this in mind, the findings from the three postpositions

focused on in this dissertation are not enough to generalize all the postposi-

tions in Korean. Even if these three are frequently used in Korean, the findings

of this study should be further verified by more postpositions. Therefore, in

the future, I would improve this study to cover more postpositions that have

similar degrees of polysemy as -ey, -eyse, and -(u)lo.

Second, to determine the number and types of functions of each postpo-

sition, I used only the definition in the Sejong Electronic Dictionary. However,

the specific functions of each postposition used in the Sejong corpus are

somewhat different from those found in previous studies on Korean linguis-

tics. For instance, some studies considered ‘time’ as a function of -ey, but

the Sejong corpus included it in the ‘criteria’ function, and it also was not

included as a function of -ey in the Sejong Electronic Dictionary. As shown

in Figure 10.1, I confirmed that CRT contains ‘time’ in the Sejong Electronic

Dictionary.

222



CHAPTER 10. CONCLUSION

Figure 10.1: Example of an error extracted from the file V-aphciluta in the Se-
jong Electronic Dictionary

In addition, the number of functions of -ey varied across different studies,

although the Sejong corpus set the number as eight. Therefore, in the future,

I would refer to more previous studies to determine the number and types

of functions for each postposition in order to include more details by further

subdividing the functions.

Third, I employed three embedding models (i.e., PPMI-SVD, SGNS, and

BERT) for the classification task in this dissertation. However, considering

that other contextualizedword-embeddingmodelswere released after BERT,

such as the Generation Pre-trained Transformer 3 (GPT-3; Brown et al., 2020)

or the Robustly Optimized BERT Pretraining Approach (RoBERTa; Liu et al.,

2019b), it is necessary to use them in order to ensure methodological gener-

alizability and attest to the recent computational methods in Korean, a lan-

223



10.3. IMPLICATIONS OF FINDINGS

guage typologically different from the major Indo-European languages.

10.3 Implications of findings

Despite the limitations, this dissertation has two major implications.

First, it provides the possible ways and limitations of applying three dif-

ferent embedding models for the task of identifying the intended function of

Korean adverbial postpositions. There were many previous studies on inter-

preting word-level polysemy of major Indo-European languages by employ-

ing existing word-level embedding models (Positive Pointwise Mutual Infor-

mation and Singular Value Decomposition; Skip-Gram and Negative Sam-

pling) or sentence-level embedding model (Bidirectional Encoder Represen-

tations from Transformers (BERT)) under the scheme of Distributional Se-

mantic Modeling. Despite a good amount of research on English for this is-

sue, very few studies have investigated polysemy interpretation of language

typologically different from English. Thus, I turnedmy attention to Korean, an

under-studied language in this regard, with a special focus on the relation be-

tween the three different embedding models and the word-level polysemy of

adverbial postpositions. As a result, I found that the sentence-level embed-

ding model, which assigned different vectors to all of the words, performed

better in interpreting the functions of postposition than the word-level em-

bedding models, which assigned a single vector to each word, regardless of

context. Considering that previous research is skewed toward major Indo-

European languages such as English, the attempt of this dissertation has

a contribution to the methodological generalizability by applying computa-

tional account to a lesser-studied language such as Korean.

224



CHAPTER 10. CONCLUSION

Second, this dissertation proposes two interactive visualization systems

that help to identify the relationships between words or sentences and to

show changes of the clusters by the environments (i.e., models, postposi-

tions, window sizes, and epochs). Although the word-level and sentence-

level embedding models have frequently been used in recent studies, it is

very hard to understand how these embedding models interpret word-level

polysemy. The first visualization system aimed to explore word-level embed-

ding results. This makes us see the clusters of the postpositions and their

co-occurring words in order to understand how the relationships of words

changed based on the functions of each postposition. I found that therewere

two different types of co-occurring words related to each function: (i) words

that appeared only when the postposition was used as a particular function

and (ii) words that had a strong connection in language use regardless of

which functions a postposition was used. However, the clusters of words

were not changed much by the environments of word-level embedding. The

second visualization systemwas developed to show how the sentence-level

embeddingmodel (i.e., BERT) recognizes the polysemy involving the postpo-

sitions. I found that the BERT model could identify the intended functions of

postposition when the epoch progressed, with less sensitivity to data size. In

addition, if the functions of each postposition have a semantic closeness to

eachother, the low-frequency function is containedwithin the high-frequency

function. Considering that the visualization system could help understand

the computational outcomes more easily and clearly through an intuitive

(and yet, informative) display of language data, the attempt of this disser-

tation has a particular contribution for future studies.

225





References

Standard Korean Dictionary. National Institute of Korean Language, Seoul,

South Korea, 1999.

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,

Manjunath Kudlur, Josh Levenberg, RajatMonga, SherryMoore, Derek Gor-

don Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete War-

den, Martin Wicke, Yuan Yu, and Xiaoqiang Zhang. Tensorflow: A sys-

tem for large-scale machine learning. CoRR, abs/1605.08695, 2016. URL

http://arxiv.org/abs/1605.08695.

Eneko Agirre and Oier. Lopez de Lacalle. On robustness and domain adap-

tation using svd for word sense disambiguation. In In Proceedings of the

22nd International Conference on Computational Linguistics (Coling 2008).

Myung-chel Ahn. The meaning of locative postposition ‘-ey’. kwanak emwun

yenkwu, 7:245–268, 1983.

WaleedAmmar, GeorgeMulcaire,Miguel Ballesteros, Chris Dyer, andNoahA.

Smith. Many languages, one parser. Transactions of the Association for

227

http://arxiv.org/abs/1605.08695


REFERENCES

Computational Linguistics, 4:431–444, 2016. doi: 10.1162/tacl_a_00109. URL

https://www.aclweb.org/anthology/Q16-1031.

Alain Auger and Caroline Barrière. Pattern-based approaches to semantic

relation extraction: A state-of-the-art. Terminology: international journal

of theoretical and applied issues in specialized communication, 14(1):1–19,

2008.

Jangseong Bae and Changki Lee. End-to-end learning of korean semantic

role labeling using bidirectional lstm crf. In Proc. of the KIISE Korea Com-

puter Congress, pages 566–568, 2015.

Jangseong Bae, Junho Oh, Hyunsun Hwang, and Changki Lee. Extending

korean propbank for korean semantic role labeling and applying domain

adaptation technique. Korean Information Processing Society, pages 44–

47, 2014.

Jangseong Bae, Changki Lee, and Soojong Lim. Korean semantic role label-

ing using deep learning. Korean Information Science Society, 6:690–692,

2015.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine

translation by jointly learning to align and translate, 2014. URL http:

//arxiv.org/abs/1409.0473. cite arxiv:1409.0473Comment: Ac-

cepted at ICLR 2015 as oral presentation.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count,

predict! a systematic comparison of context-counting vs. context-

predicting semantic vectors. 52nd Annual Meeting of the Association

228

https://www.aclweb.org/anthology/Q16-1031
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473


REFERENCES

for Computational Linguistics, ACL 2014 - Proceedings of the Con-

ference, 1:238–247, 2014. URL https://www.researchgate.

net/publication/270877599_Don%27t_count_predict_

A_systematic_comparison_of_context-counting_vs_

context-predicting_semantic_vectors.

Yoshua Bengio, Patrick Simard, and Paolo Frasconi. Learning long-term de-

pendencies with gradient descent is difficult. IEEE Transactions on Neural

Networks, 5(2):157–166, 1994.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-

plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,

Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,

Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey

Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam

McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language

models are few-shot learners, 2020.

Jason Brownlee. Repeated k-fold cross-validation for model evaluation

in python, 2020. URL https://machinelearningmastery.com/

repeated-k-fold-cross-validation-with-python/.

John A. Bullinaria and J. Levy. Extracting semantic representations from

word co-occurrence statistics: A computational study. Behavior Research

Methods, 39:510–526, 2007.

John A. Bullinaria and Joseph P. Levy. Extracting semantic representations

from word co-occurrence statistics: stop-lists, stemming, and svd. Be-

229

https://www.researchgate.net/publication/270877599_Don%27t_count_predict_A_systematic_comparison_of_context-counting_vs_context-predicting_semantic_vectors
https://www.researchgate.net/publication/270877599_Don%27t_count_predict_A_systematic_comparison_of_context-counting_vs_context-predicting_semantic_vectors
https://www.researchgate.net/publication/270877599_Don%27t_count_predict_A_systematic_comparison_of_context-counting_vs_context-predicting_semantic_vectors
https://www.researchgate.net/publication/270877599_Don%27t_count_predict_A_systematic_comparison_of_context-counting_vs_context-predicting_semantic_vectors
https://machinelearningmastery.com/repeated-k-fold-cross-validation-with-python/
https://machinelearningmastery.com/repeated-k-fold-cross-validation-with-python/


REFERENCES

havior Research Methods, 44(3):890–907, Sep 2012. ISSN 1554-3528.

doi: 10.3758/s13428-011-0183-8. URL https://doi.org/10.3758/

s13428-011-0183-8.

Guibin Chen, Deheng Ye, Zhenchang Xing, Jieshan Chen, and Erik Cambria.

Ensemble application of convolutional and recurrent neural networks for

multi-label text categorization. In IJCNN, pages 2377–2383. IEEE, 2017.

ISBN 978-1-5090-6182-2. URL http://dblp.uni-trier.de/db/

conf/ijcnn/ijcnn2017.html#ChenYXCC17.

Jeong-mi Cho and Gil-cheng Kim. A study on the resolving of the ambiguity

while interpretation of meaning in korean. The Korean Institute of Informa-

tion Scientists and Engineers, 14(7):71–83, 1996.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. On the properties of neural machine translation: Encoder–decoder

approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Se-

mantics and Structure in Statistical Translation, pages 103–111, Doha,

Qatar, October 2014. Association for Computational Linguistics. doi: 10.

3115/v1/W14-4012. URL https://www.aclweb.org/anthology/

W14-4012.

Francois Chollet. Keras (github), 2015. URL https://github.com/

fchollet/keras.

Miho Choo and Hye-young Kwak. Using Korean. Cambridge University Press,

New York, NY, 2008.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.

Empirical evaluation of gated recurrent neural networks on sequence

230

https://doi.org/10.3758/s13428-011-0183-8
https://doi.org/10.3758/s13428-011-0183-8
http://dblp.uni-trier.de/db/conf/ijcnn/ijcnn2017.html#ChenYXCC17
http://dblp.uni-trier.de/db/conf/ijcnn/ijcnn2017.html#ChenYXCC17
https://www.aclweb.org/anthology/W14-4012
https://www.aclweb.org/anthology/W14-4012
https://github.com/fchollet/keras
https://github.com/fchollet/keras


REFERENCES

modeling, 2014. URL http://arxiv.org/abs/1412.3555. cite

arxiv:1412.3555Comment: Presented inNIPS2014Deep Learning andRep-

resentation Learning Workshop.

Kenneth Ward Church and Patrick Hanks. Word association norms, mu-

tual information, and lexicography. Computational linguistics, 16(1):22–29,

1989.

Andy Clark. Embodied prediction. In In T. K. Metzinger J. M. Windt (Eds.)

Open MIND: 7(T). Frankfurt am Main: MIND Group, 2015.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Man-

ning. What does BERT look at? an analysis of bert’s attention. CoRR,

abs/1906.04341, 2019. URLhttp://arxiv.org/abs/1906.04341.

Andy Coenen, Emily Reif, Ann Yuan, Been Kim, Adam Pearce, Fernanda

Viégas, and Martin Wattenberg. Visualizing and measuring the geome-

try of bert. 2019. URL http://arxiv.org/abs/1906.02715. cite

arxiv:1906.02715Comment: 8 pages, 5 figures.

Ronan Collobert and Jason Weston. A unified architecture for natural lan-

guage processing: Deep neural networks with multitask learning. In Pro-

ceedings of the 25th International Conference on Machine Learning, ICML

’08, page 160–167, New York, NY, USA, 2008. Association for Comput-

ing Machinery. ISBN 9781605582054. doi: 10.1145/1390156.1390177. URL

https://doi.org/10.1145/1390156.1390177.

Ido Dagan, Shaul Marcus, and Shaul Markovitch. Contextual word similarity

and estimation from sparse data. Comput. Speech Lang., 9(2):123–152,

231

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1906.04341
http://arxiv.org/abs/1906.02715
https://doi.org/10.1145/1390156.1390177


REFERENCES

1995. URL http://dblp.uni-trier.de/db/journals/csl/

csl9.html#DaganMM95.

Andrew M. Dai and Quoc V. Le. Semi-supervised sequence learn-

ing. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi

Sugiyama, and Roman Garnett, editors, NIPS, pages 3079–3087, 2015.

URL http://dblp.uni-trier.de/db/conf/nips/nips2015.

html#DaiL15.

Hoa Trang Dang. Overview of DUC 2005. In Proceedings of the 2005

Document Understanding Workshop, 2005. URL http://www-nlpir.

nist.gov/projects/duc/pubs.html.

Mark Davies. The corpus of contemporary american english (coca): 400+

million words, 2008. URL http://corpus.byu.edu/coca.

Mark Davies. The wikipedia corpus: 4.6 million articles, 1.9 billion words,

2015. URL https://www.english-corpora.org/wiki/.

Guillaume Desagulier. Visualizing distances in a set of near synonyms:

rather, quite, fairly, and pretty. In In Corpus Methods for Semantics: Quan-

titative Studies in Polysemy and Synonymy, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

pre-training of deep bidirectional transformers for language understand-

ing. CoRR, abs/1810.04805, 2018. URL http://arxiv.org/abs/

1810.04805.

Cícero Nogueira dos Santos and Bianca Zadrozny. Learning character-

level representations for part-of-speech tagging. In ICML, volume 32

232

http://dblp.uni-trier.de/db/journals/csl/csl9.html#DaganMM95
http://dblp.uni-trier.de/db/journals/csl/csl9.html#DaganMM95
http://dblp.uni-trier.de/db/conf/nips/nips2015.html#DaiL15
http://dblp.uni-trier.de/db/conf/nips/nips2015.html#DaiL15
http://www-nlpir.nist.gov/projects/duc/pubs.html
http://www-nlpir.nist.gov/projects/duc/pubs.html
http://corpus.byu.edu/coca
https://www.english-corpora.org/wiki/
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805


REFERENCES

of JMLR Workshop and Conference Proceedings, pages 1818–1826.

JMLR.org, 2014. URL http://dblp.uni-trier.de/db/conf/

icml/icml2014.html#SantosZ14.

C. Eckart and G. Young. The approximation of onematrix by another of lower

rank. Psychometrika, 1:211–218, 1936.

Katrin Erk. Vector space models of word meaning and phrase meaning: A

survey. Lang. Linguistics Compass, 6(10):635–653, 2012. URL http://

dblp.uni-trier.de/db/journals/llc/llc6.html#Erk12.

Kawin Ethayarajh. How contextual are contextualized word representa-

tions? comparing the geometry of BERT, ELMo, and GPT-2 embeddings.

In Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Nat-

ural Language Processing (EMNLP-IJCNLP), pages 55–65, Hong Kong,

China, November 2019. Association for Computational Linguistics. doi: 10.

18653/v1/D19-1006. URL https://www.aclweb.org/anthology/

D19-1006.

R. M. Fano. Transmission of Information: A Statistical Theory of Communica-

tions. MIT Press, 1961.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan,

Gadi Wolfman, and Eytan Ruppin. Placing search in context: The concept

revisited. ACM Trans. Inf. Syst., 20(1):116–131, January 2002. ISSN 1046-

8188. doi: 10.1145/503104.503110. URL https://doi.org/10.1145/

503104.503110.

233

http://dblp.uni-trier.de/db/conf/icml/icml2014.html#SantosZ14
http://dblp.uni-trier.de/db/conf/icml/icml2014.html#SantosZ14
http://dblp.uni-trier.de/db/journals/llc/llc6.html#Erk12
http://dblp.uni-trier.de/db/journals/llc/llc6.html#Erk12
https://www.aclweb.org/anthology/D19-1006
https://www.aclweb.org/anthology/D19-1006
https://doi.org/10.1145/503104.503110
https://doi.org/10.1145/503104.503110


REFERENCES

J. Firth. A synopsis of linguistic theory 1930-1955. Studies in Linguistic Anal-

ysis, Philological. Longman, 1957.

Marcos Garcia and Pablo Gamallo. An exploration of the linguistic knowl-

edge for semantic relation extraction in spanish. In Proceedings of Joint

Workshop FAM-LbR/KRAQ’11 at IJCAI 2011., 2011.

Alfio Massimiliano Gliozzo, Claudio Giuliano, and Carlo Strapparava. Do-

main kernels for word sense disambiguation. In Kevin Knight, Hwee Tou

Ng, and Kemal Oflazer, editors, ACL, pages 403–410. The Association

for Computer Linguistics, 2005. URL http://dblp.uni-trier.de/

db/conf/acl/acl2005.html#GliozzoGS05.

Stefan Th Gries. Quantitative Methods in Linguistics. International Encyclo-

pedia of the Social and Behavioral Sciences. Amsterdam: Elsevier, 2015.

Sebastian Guggisberg. Fine tuning bert for text classification with farm,

2020.

Ben Hachey, Gabriel Murray, and David Reitter. Dimensionality reduction

aids term co-occurrence based multi-document summarization. In Pro-

ceedings of the COLING-ACL Workshop Task-Focused Summarization and

Question Answering 2006, pages 1–7, Sydney, Australia, 2006.

Michael Hahsler, Matthew Piekenbrock, and Derek Doran. Dbscan:

Fast density-based clustering with r, 2019. URL https://cran.

r-project.org/web/packages/dbscan/vignettes/

dbscan.pdf.

Lushan Han, Tim Finin, Paul McNamee, Anupam Joshi, and Yelena

234

http://dblp.uni-trier.de/db/conf/acl/acl2005.html#GliozzoGS05
http://dblp.uni-trier.de/db/conf/acl/acl2005.html#GliozzoGS05
https://cran.r-project.org/web/packages/dbscan/vignettes/dbscan.pdf
https://cran.r-project.org/web/packages/dbscan/vignettes/dbscan.pdf
https://cran.r-project.org/web/packages/dbscan/vignettes/dbscan.pdf


REFERENCES

Yesha. Improving word similarity by augmenting pmi with estimates

of word polysemy. IEEE Trans. Knowl. Data Eng., 25(6):1307–1322,

2013. URL http://dblp.uni-trier.de/db/journals/tkde/

tkde25.html#HanFMJY13.

Zellig Harris. Distributional structure. Word, 10(2-3):146–162, 1954. doi:

10.1007/978-94-009-8467-7_1. URL https://link.springer.com/

chapter/10.1007/978-94-009-8467-7_1.

Amir Hazem and Emmanuel Morin. Word co-occurrence counts prediction

for bilingual terminology extraction from comparable corpora. In IJCNLP,

pages 1392–1400. Asian Federation of Natural Language Processing /

ACL, 2013. ISBN978-4-9907348-0-0. URLhttp://dblp.uni-trier.

de/db/conf/ijcnlp/ijcnlp2013.html#HazemM13.

Enrique Henestroza Anguiano and Pascal Denis. FreDist: Automatic

construction of distributional thesauri for French. In TALN - 18ème

conférence sur le traitement automatique des langues naturelles, pages

119–124, Montpellier, France, France, June 2011. URL https://hal.

archives-ouvertes.fr/hal-00602004.

Minsuk Heo. Rnn basic (vanilla recurrent neural network),

2018. URL https://youtu.be/2AuMgtw-z6s?list=

PLVNY1HnUlO27T2H_KspAKembHX_ru0Ha1.

Felix Hill, Roi Reichart, and Anna Korhonen. SimLex-999: Evaluating se-

mantic models with (genuine) similarity estimation. Computational Lin-

guistics, 41(4):665–695, December 2014. doi: 10.1162/COLI_a_00237. URL

https://www.aclweb.org/anthology/J15-4004.

235

http://dblp.uni-trier.de/db/journals/tkde/tkde25.html#HanFMJY13
http://dblp.uni-trier.de/db/journals/tkde/tkde25.html#HanFMJY13
https://link.springer.com/chapter/10.1007/978-94-009-8467-7_1
https://link.springer.com/chapter/10.1007/978-94-009-8467-7_1
http://dblp.uni-trier.de/db/conf/ijcnlp/ijcnlp2013.html#HazemM13
http://dblp.uni-trier.de/db/conf/ijcnlp/ijcnlp2013.html#HazemM13
https://hal.archives-ouvertes.fr/hal-00602004
https://hal.archives-ouvertes.fr/hal-00602004
https://youtu.be/2AuMgtw-z6s?list=PLVNY1HnUlO27T2H_KspAKembHX_ru0Ha1
https://youtu.be/2AuMgtw-z6s?list=PLVNY1HnUlO27T2H_KspAKembHX_ru0Ha1
https://www.aclweb.org/anthology/J15-4004


REFERENCES

Martin Hilpert. Change in modal meanings. Constructions and Frames, 8(1):

66–85, 2016.

YunpyoHong. On the case of directionality. The Society of Korean Linguistics,

6:111–132, 1978.

Harold Hotelling. Analysis of a complex of statistical variables into principal

components. Journal of Educational Psychology, 24(6):417–441, 1933.

Jason C Hung and Che-Yu Yang. Word sense disambiguation using word

ontology and concept distribution. Journal of the Chinese institute of en-

gineers, 32(2):153–168, 2009.

Shankar Iyer, Nikhil Dandekar, and Kornél Csernai.

First quora dataset release: Question pairs, 2017.

URL https://www.quora.com/q/quoradata/

First-Quora-Dataset-Release-Question-Pairs.

Heewon Jeon, Donggeon Lee, and Jangwon Park. Korean bert pre-trained

cased (kobert), 2019. URL https://github.com/SKTBrain/

KoBERT.

Byong-cheol Jeong. An integrated study on the particle ‘-ey’ based on the

simulation model. The Linguistic Science Society, 55:275–304, 2010.

Byeong-cheol Jo, Mi-ran Seok, Hye-jeong Song, Chan-young Park, Jongdae

Kim, and Yu-seop Kim. Expansion of feature information for korean se-

mantic role labeling. Advanced Science and Technology Letters, 120:798–

802, 2015.

236

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://github.com/SKTBrain/KoBERT
https://github.com/SKTBrain/KoBERT


REFERENCES

Heejung Jung. The meaning of postposition focus on ‘-ey’. The Society of

Korean Linguistics, 17:153–175, 1988.

Daniel Jurafsky and James. H. Martin. Speech and language processing: An

Introduction to Natural Language Processing. Computational Linguistics,

and Speech Recognition, Prentice-Hall, 2019.

Sin-jae Kang and Jung-hye Park. Rule construction for determination of the-

matic roles by using large corpora and computational dictionaries. Korean

Information Processing Society, 10(2):219–228, 2003.

Jun’ichi Kazama, Stijn De Saeger, Kow Kuroda, Masaki Murata, and Kentaro

Torisawa. A bayesian method for robust estimation of distributional sim-

ilarities. In Jan Hajic, Sandra Carberry, and Stephen Clark, editors, ACL,

pages 247–256. The Association for Computer Linguistics, 2010. ISBN

978-1-932432-67-1. URL http://dblp.uni-trier.de/db/conf/

acl/acl2010.html#KazamaSKMT10.

Byoung-soo Kim, Yong-hun Lee, Seung-hoon Na, Jun-gi Kim, and Jong-hyeok

Lee. Bootstrapping for semantic role assignment of korean case marker.

Korea Information Science Society, pages 4–6, 2006.

Byoung-soo Kim, Yong-hun Lee, and Jong-hyeok Lee. Unsupervised seman-

tic role labeling for korean adverbial case. Journal of KIISE: Software and

Applications, 34(2):32–39, 2007.

Wan-su Kim and Cheol-young Ock. Korean semantic role labeling using case

frame and frequency. The Korean Institute of Information Scientists and

Engineers, 6:651–653, 2015.

237

http://dblp.uni-trier.de/db/conf/acl/acl2010.html#KazamaSKMT10
http://dblp.uni-trier.de/db/conf/acl/acl2010.html#KazamaSKMT10


REFERENCES

Wan-su Kim and Cheol-young Ock. Korean semantic role labeling using case

frame dictionary and subcategorization. The Korean Institute of Informa-

tion Scientists and Engineers, 43(12):1376–1384, 2016.

Thomas K. Landauer, Peter W. Foltz, and Darrell Laham. An introduction to

latent semantic analysis. Discourse Processes, 25:259–284, 1998.

J. Richard Landis and Gary G. Koch. The measurement of observer agree-

ment for categorical data. biometrics, pages 159–174, 1977.

Changki Lee, Soojong Lim, and Hyunki Kim. Korean semantic role labeling

using structured svm. The Korean Institute of Information Scientists and

Engineers, 42(2):220–226, 2015.

Kee-dong Lee. The meaning of the postpositions -ey and -eyse. The Korean

Language Society, 173:9–34, 1981.

Namsun Lee. In the form ‘-ey’ and the material ‘-eyse’. kwanak emwun

yenkwu, 8:321–355, 1983.

Joseph P. Levy, John A. Bullinaria, andMalti Patel. Explorations in the deriva-

tion of word co-occurrence statistics. South Pacific Journal of Psychology,

10(1):99–111, 1999. doi: 10.1017/S0257543400001061.

Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In

Proceedings of the 52nd Annual Meeting of the Association for Compu-

tational Linguistics (Volume 2: Short Papers), pages 302–308, Baltimore,

Maryland, June 2014. Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/P14-2050.

238

http://www.aclweb.org/anthology/P14-2050


REFERENCES

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving Distributional Sim-

ilarity with Lessons Learned from Word Embeddings. Transactions

of the Association for Computational Linguistics, 3:211–225, December

2015. ISSN 2307-387X. doi: 10.1162/tacl_a_00134. URL https://www.

mitpressjournals.org/doi/abs/10.1162/tacl_a_00134.

Jiwei Li, Xinlei Chen, Eduard H. Hovy, and Dan Jurafsky. Visualiz-

ing and understanding neural models in nlp. CoRR, abs/1506.01066,

2015. URL http://dblp.uni-trier.de/db/journals/corr/

corr1506.html#LiCHJ15.

Yongjie Lin, Yi Chern Tan, and Robert Frank. Open sesame: Getting inside

bert’s linguistic knowledge. CoRR, abs/1906.01698, 2019. URL http:

//arxiv.org/abs/1906.01698.

Pierre Lison and Andrei Kutuzov. Redefining context windows for word

embedding models: An experimental study. CoRR, abs/1704.05781,

2017. URL http://dblp.uni-trier.de/db/journals/corr/

corr1704.html#LisonK17.

Pierre Lison and Jörg Tiedemann. OpenSubtitles2016: Extracting large

parallel corpora from movie and TV subtitles. In Proceedings of the

Tenth International Conference on Language Resources and Evaluation

(LREC’16), pages 923–929, Portorož, Slovenia, May 2016. European Lan-

guage Resources Association (ELRA). URL https://www.aclweb.

org/anthology/L16-1147.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and

Noah A. Smith. Linguistic knowledge and transferability of contextual rep-

239

https://www.mitpressjournals.org/doi/abs/10.1162/tacl_a_00134
https://www.mitpressjournals.org/doi/abs/10.1162/tacl_a_00134
http://dblp.uni-trier.de/db/journals/corr/corr1506.html#LiCHJ15
http://dblp.uni-trier.de/db/journals/corr/corr1506.html#LiCHJ15
http://arxiv.org/abs/1906.01698
http://arxiv.org/abs/1906.01698
http://dblp.uni-trier.de/db/journals/corr/corr1704.html#LisonK17
http://dblp.uni-trier.de/db/journals/corr/corr1704.html#LisonK17
https://www.aclweb.org/anthology/L16-1147
https://www.aclweb.org/anthology/L16-1147


REFERENCES

resentations. In Proceedings of the 2019 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, Volume 1 (Long and Short Papers), pages 1073–1094,

Minneapolis, Minnesota, June 2019a. Association for Computational Lin-

guistics. doi: 10.18653/v1/N19-1112. URL https://www.aclweb.org/

anthology/N19-1112.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta:

A robustly optimized bert pretraining approach, 2019b.

Daniel Loureiro and Alípio Jorge. Language modelling makes sense: Propa-

gating representations through WordNet for full-coverage word sense dis-

ambiguation. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 5682–5691, Florence, Italy, July 2019.

Association for Computational Linguistics. doi: 10.18653/v1/P19-1569. URL

https://www.aclweb.org/anthology/P19-1569.

Laurens van der Maaten and Geoffrey Hinton. Visualizing Data us-

ing t-SNE. Journal of Machine Learning Research, 9(Nov):2579–2605,

2008. ISSN ISSN 1533-7928. URL http://jmlr.org/papers/v9/

vandermaaten08a.html.

J. B. MacQueen. Some methods for classification and analysis of multivari-

ate observations. In L. M. Le Cam and J. Neyman, editors, Proc. of the fifth

Berkeley Symposium on Mathematical Statistics and Probability, volume 1,

pages 281–297. University of California Press, 1967.

240

https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/P19-1569
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html


REFERENCES

Gyeongheum Maeng. Cognitive semantics of korean postposition ‘-ey’. The

Journal of Korean Studies, 41:325–366, 2016.

Irina Matveeva, Gina-Anne Levow, Ayman Farahat, and Christiaan Royer.

Term represetation with generalized latent semantic analysis. In In Pro-

ceedings of the 2005 Conference on Recent Advances in Natural Language

Processing, 2005.

Chris McCormick. Bert fine-tuning tutorial with pytorch, 2019. URL http:

//mccormickml.com/2019/07/22/BERT-fine-tuning/.

Oren Melamud, David McClosky, Siddharth Patwardhan, and Mohit Bansal.

The role of context types and dimensionality in learning word embed-

dings. In Kevin Knight, Ani Nenkova, and Owen Rambow, editors, HLT-

NAACL, pages 1030–1040. TheAssociation for Computational Linguistics,

2016. ISBN 978-1-941643-91-4. URL http://dblp.uni-trier.de/

db/conf/naacl/naacl2016.html#MelamudMPB16.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev

Khudanpur. Recurrent neural network based language model. In INTER-

SPEECH, volume 2, page 3, 2010.

Tomas Mikolov, Anoop Deoras, Daniel Povey, Lukás Burget, and Jan Cer-

nocký. Strategies for training large scale neural network languagemodels.

In David Nahamoo and Michael Picheny, editors, ASRU, pages 196–201.

IEEE, 2011. ISBN 978-1-4673-0365-1. URL http://dblp.uni-trier.

de/db/conf/asru/asru2011.html#MikolovDPBC11.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-

tion of word representations in vector space. In Yoshua Bengio and Yann

241

http://mccormickml.com/2019/07/22/BERT-fine-tuning/
http://mccormickml.com/2019/07/22/BERT-fine-tuning/
http://dblp.uni-trier.de/db/conf/naacl/naacl2016.html#MelamudMPB16
http://dblp.uni-trier.de/db/conf/naacl/naacl2016.html#MelamudMPB16
http://dblp.uni-trier.de/db/conf/asru/asru2011.html#MikolovDPBC11
http://dblp.uni-trier.de/db/conf/asru/asru2011.html#MikolovDPBC11


REFERENCES

LeCun, editors, 1st International Conference on Learning Representations,

ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Pro-

ceedings, 2013a. URL http://arxiv.org/abs/1301.3781.

TomasMikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositional-

ity. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Wein-

berger, editors, Advances in Neural Information Processing Systems 26,

pages 3111–3119. 2013b.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in

continuous space word representations. In HLT-NAACL, pages 746–751,

2013c.

Seongmin Mun and Kyungwon Lee. Data analysis by integrating statistics

and visualization: Visual verification for the prediction model. Journal of

Society of Design Convergence, 15(6):195–214, 2016.

Seongmin Mun and Gyu-Ho Shin. Context window and polysemy interpreta-

tion: A case of korean adverbial postposition -(u)lo. In IMPRS Conference

2020: Interdisciplinary Approaches to the Language Sciences, Max Planck

Institute for Psycholinguistics, 2020.

Seongmin Mun, Hyunwoo Han, Hyoji Ha, and Kyungwon Lee. A visual analy-

sis on factors affecting repurchase intention in social commerce. Journal

of Society of Design Convergence, 13(6):139–152, 2014.

Seongmin Mun, Gyeongcheol Choi, Sangkuk Lee, and Kyungwon Lee. Visual

analysis for voting relationships in joseon dynasty, korea. pages 111–118,

2017.

242

http://arxiv.org/abs/1301.3781


REFERENCES

Ki-sim Nam. The use of the korean postposition: focus on ‘-ey’ and ‘-(u)lo’.

sekwang hakswul calyosa, 1993.

Yoshiki Niwa and Yoshihiko Nitta. Co-occurrence vectors from corpora vs.

distance vectors fromdictionaries. In Proceedings of the 15th International

Conference On Computational Linguistics, pages 304–309, Kyoto, Japan,

1994.

Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A

decomposable attention model for natural language inference. CoRR,

abs/1606.01933, 2016. URL http://dblp.uni-trier.de/db/

journals/corr/corr1606.html#ParikhT0U16.

Jeong-woon Park. A polysemy network of the korean instrumental case.

Korean Journal of Linguistics, 24(3):405–425, 1999.

Seong-bae Park and Yung-taek Kim. Semantic role determination of korean

adverbial postpositions. Korea Information Science Society, 4:339–401,

1998.

Seong-bae Park, Byoung-tak Zhang, and Yungtaek Kim. Decision tree based

disambiguation of semantic roles for korean adverbial postpositions in

korean-english machine translation. The Korean Institute of Information

Scientists and Engineers, 27(6):668–677, 2000.

Tae-ho Park and Jeong-won Cha. Korean semantic role labeling using word

sense. The Korean Institute of Information Scientists and Engineers, 6:

590–592, 2017.

243

http://dblp.uni-trier.de/db/journals/corr/corr1606.html#ParikhT0U16
http://dblp.uni-trier.de/db/journals/corr/corr1606.html#ParikhT0U16


REFERENCES

Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. En-

glish gigaword fifth edition (ldc2011t07), 2011. URLhttps://catalog.

ldc.upenn.edu/LDC2011T07.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca

Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Mar-

tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-

performance deep learning library. CoRR, abs/1912.01703, 2019. URL

http://arxiv.org/abs/1912.01703.

Ted Pedersen, Amruta Purandare, and Anagha Kulkarni. Name discrimina-

tion by clustering similar contexts. In Alexander F. Gelbukh, editor,CICLing,

volume 3406 of Lecture Notes in Computer Science, pages 226–237.

Springer, 2005. ISBN3-540-24523-5. URLhttp://dblp.uni-trier.

de/db/conf/cicling/cicling2005.html#PedersenPK05.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cour-

napeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay.

Scikit-learn: Machine learning in python. CoRR, abs/1201.0490, 2012. URL

http://arxiv.org/abs/1201.0490.

Yves Peirsman, Kris Heylen, and Dirk Speelman. Finding semantically related

words in dutch: co-occurrences versus syntactic contexts. In Proceedings

244

https://catalog.ldc.upenn.edu/LDC2011T07
https://catalog.ldc.upenn.edu/LDC2011T07
http://arxiv.org/abs/1912.01703
http://dblp.uni-trier.de/db/conf/cicling/cicling2005.html#PedersenPK05
http://dblp.uni-trier.de/db/conf/cicling/cicling2005.html#PedersenPK05
http://arxiv.org/abs/1201.0490


REFERENCES

of the 2007 Workshop on Contextual Information in Semantic Space Mod-

els, pages 9–16, 2007.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:

Global vectors forword representation. In EMNLP, volume 14, pages 1532–

1543, 2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word repre-

sentations, 2018. URL http://arxiv.org/abs/1802.05365. cite

arxiv:1802.05365Comment: NAACL 2018. Originally posted to openreview

27 Oct 2017. v2 updated for NAACL camera ready.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika, Navonil Majumder, Amir

Zadeh, and Louis-Philippe Morency. Context-dependent sentiment anal-

ysis in user-generated videos. In Regina Barzilay and Min-Yen Kan, edi-

tors, ACL (1), pages 873–883. Association for Computational Linguistics,

2017. ISBN 978-1-945626-75-3. URL http://dblp.uni-trier.de/

db/conf/acl/acl2017-1.html#PoriaCHMZM17.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Im-

proving language understanding by generative pre-training, 2018. URL

https://s3-us-west-2.amazonaws.com/openai-assets/

research-covers/language-unsupervised/language_

understanding_paper.pdf.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings us-

ing siamese bert-networks. CoRR, abs/1908.10084, 2019. URL http:

//arxiv.org/abs/1908.10084.

245

http://arxiv.org/abs/1802.05365
http://dblp.uni-trier.de/db/conf/acl/acl2017-1.html#PoriaCHMZM17
http://dblp.uni-trier.de/db/conf/acl/acl2017-1.html#PoriaCHMZM17
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084


REFERENCES

Nils Reimers, Benjamin Schiller, Tilman Beck, Johannes Daxenberger, Chris-

tian Stab, and Iryna Gurevych. Classification and clustering of argu-

ments with contextualized word embeddings. In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, pages

567–578, Florence, Italy, July 2019. Association for Computational Lin-

guistics. doi: 10.18653/v1/P19-1054. URL https://www.aclweb.org/

anthology/P19-1054.

Martin Riedl and Chris Biemann. There’s no ‘count or predict’ but task-

based selection for distributional models. In Claire Gardent and Chris-

tian Retoré, editors, IWCS(2). The Association for Computer Linguis-

tics, 2017. URL http://dblp.uni-trier.de/db/conf/iwcs/

iwcs2017-2.html#RiedlB17.

H.C. Romersburg. Cluster Analysis for Research. Lifetime Learning Publica-

tions, Belmont, California, 1984.

G. Salton. The SMART Retrieval System: Experiments in Automatic Document

Processing. Prentice Hall, 1971.

Jörg Sander,Martin Ester, Hans-Peter Kriegel, andXiaowei Xu. Density-based

clustering in spatial databases: The algorithm gdbscan and its applica-

tions. Data Mining and Knowledge Discovery, 2(2):169–194, jun 1998. URL

http://dx.doi.org/10.1023/A:1009745219419.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Dis-

tilbert, a distilled version of bert: smaller, faster, cheaper and lighter.

CoRR, abs/1910.01108, 2019. URL http://dblp.uni-trier.de/

db/journals/corr/corr1910.html#abs-1910-01108.

246

https://www.aclweb.org/anthology/P19-1054
https://www.aclweb.org/anthology/P19-1054
http://dblp.uni-trier.de/db/conf/iwcs/iwcs2017-2.html#RiedlB17
http://dblp.uni-trier.de/db/conf/iwcs/iwcs2017-2.html#RiedlB17
http://dx.doi.org/10.1023/A:1009745219419
http://dblp.uni-trier.de/db/journals/corr/corr1910.html#abs-1910-01108
http://dblp.uni-trier.de/db/journals/corr/corr1910.html#abs-1910-01108


REFERENCES

Mike Schuster and Kaisuke Nakajima. Japanese and korean voice

search. In ICASSP, pages 5149–5152. IEEE, 2012. ISBN 978-1-4673-

0046-9. URL http://dblp.uni-trier.de/db/conf/icassp/

icassp2012.html#SchusterN12.

Hinrich Schütze. Dimensions of meaning. In Supercomputing ’92: Proceed-

ings of the 1992 ACM/IEEE conference on Supercomputing, pages 787–

796, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press. ISBN

0-8186-2630-5. URL http://portal.acm.org/citation.cfm?

id=148132&dl=ACM&coll=GUIDE.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine

translation of rare words with subword units. In ACL (1). The As-

sociation for Computer Linguistics, 2016. ISBN 978-1-945626-00-5.

URL http://dblp.uni-trier.de/db/conf/acl/acl2016-1.

html#SennrichHB16a.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Ha-

jishirzi. Bidirectional attention flow for machine comprehension,

2016. URL http://arxiv.org/abs/1611.01603. cite

arxiv:1611.01603Comment: Published as a conference paper at ICLR

2017.

YeolwonSeong. Korean parsing using sejong dictionary. TheKorean Institute

of Information Scientists and Engineers, pages 261–268, 2007.

Hyo-pil Shin. The 21st sejong project : with a focus on selk (sejong electronic

lexicon of korean) and the knc (korean national corpus). In In The 3rd

International Joint Conference on Natural Langauge Processing, 2008.

247

http://dblp.uni-trier.de/db/conf/icassp/icassp2012.html#SchusterN12
http://dblp.uni-trier.de/db/conf/icassp/icassp2012.html#SchusterN12
http://portal.acm.org/citation.cfm?id=148132&dl=ACM&coll=GUIDE
http://portal.acm.org/citation.cfm?id=148132&dl=ACM&coll=GUIDE
http://dblp.uni-trier.de/db/conf/acl/acl2016-1.html#SennrichHB16a
http://dblp.uni-trier.de/db/conf/acl/acl2016-1.html#SennrichHB16a
http://arxiv.org/abs/1611.01603


REFERENCES

Myung-chul Shin, Yong-hun Lee, Mi-young Kim, You-jin Chung, and Jong-

hyeok Lee. Semantic role assignment for korean adverbial case using se-

jong electronic dictionary. Korea Information Science Society, pages 120–

126, 2005.

R. Sibson. SLINK: An optimally efficient algorithm for the single-link clus-

ter method. The Computer Journal, 16(1):30–34, 01 1973. ISSN 0010-

4620. doi: 10.1093/comjnl/16.1.30. URL https://doi.org/10.1093/

comjnl/16.1.30.

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng, and Christopher D. Man-

ning. Parsing natural scenes and natural language with recursive neu-

ral networks. In Lise Getoor and Tobias Scheffer, editors, ICML, pages

129–136. Omnipress, 2011. URL http://dblp.uni-trier.de/db/

conf/icml/icml2011.html#SocherLNM11.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D.

Manning, Andrew Y. Ng, and Christopher Potts. Recursive deep models

for semantic compositionality over a sentiment treebank. In Proceedings

of the conference on empirical methods in natural language processing

(EMNLP), volume 1631, page 1642. Citeseer, 2013.

Ho-Min Sohn. The korean language. Cambridge University Press, Cambridge,

UK, 1999.

Dae-heon Song. A study on the adverbial case particles of ‘-ey’ and ‘-eyse’

for korean language education. The Association of Korean Education, 101:

457–484, 2014.

248

https://doi.org/10.1093/comjnl/16.1.30
https://doi.org/10.1093/comjnl/16.1.30
http://dblp.uni-trier.de/db/conf/icml/icml2011.html#SocherLNM11
http://dblp.uni-trier.de/db/conf/icml/icml2011.html#SocherLNM11


REFERENCES

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune BERT for

text classification? CoRR, abs/1905.05583, 2019. URL http://arxiv.

org/abs/1905.05583.

Martin Sundermeyer, Ilya Oparin, Jean-LucGauvain, B. Freiberg, Ralf Schlüter,

and Hermann Ney. Comparison of feedforward and recurrent neu-

ral network language models. In ICASSP, pages 8430–8434. IEEE,

2013. URL http://dblp.uni-trier.de/db/conf/icassp/

icassp2013.html#SundermeyerOGFSN13.

Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recur-

rent neural network for sentiment classification. In Lluís Màrquez, Chris

Callison-Burch, Jian Su, Daniele Pighin, and Yuval Marton, editors, EMNLP,

pages 1422–1432. The Association for Computational Linguistics, 2015.

ISBN 978-1-941643-32-7. URL http://dblp.uni-trier.de/db/

conf/emnlp/emnlp2015.html#TangQL15.

Raphael Tang, Yao Lu, Linqing Liu, LiliMou, OlgaVechtomova, and JimmyLin.

Distilling task-specific knowledge from BERT into simple neural networks.

CoRR, abs/1903.12136, 2019. URL http://arxiv.org/abs/1903.

12136.

W.S. Torgerson. Multidimensional scaling i: Theory and method. Psychome-

trika, 17:401—-419, 1952.

Peter D. Turney. A uniform approach to analogies, synonyms, antonyms,

and associations. In Proceedings of the 22nd International Conference on

Computational Linguistics (Coling 2008), pages 905–912, Manchester, UK,

2008.

249

http://arxiv.org/abs/1905.05583
http://arxiv.org/abs/1905.05583
http://dblp.uni-trier.de/db/conf/icassp/icassp2013.html#SundermeyerOGFSN13
http://dblp.uni-trier.de/db/conf/icassp/icassp2013.html#SundermeyerOGFSN13
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2015.html#TangQL15
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2015.html#TangQL15
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1903.12136


REFERENCES

Peter D. Turney andPatrick Pantel. From frequency tomeaning: Vector space

models of semantics. CoRR, abs/1003.1141, 2010. URLhttp://arxiv.

org/abs/1003.1141.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is

all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems 30, page 5998–6008. Curran As-

sociates, Inc., 2017. URL https://papers.nips.cc/paper/

7181-attention-is-all-you-need.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geof-

frey E. Hinton. Grammar as a foreign language. In Corinna Cortes, Neil D.

Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett, editors,

NIPS, pages 2773–2781, 2015. URL http://dblp.uni-trier.de/

db/conf/nips/nips2015.html#VinyalsKKPSH15.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and

Samuel Bowman. GLUE: A multi-task benchmark and analysis platform

for natural language understanding. In Proceedings of the 2018 EMNLP

Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for

NLP, pages 353–355, Brussels, Belgium, November 2018. Association

for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL https:

//www.aclweb.org/anthology/W18-5446.

Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. Attention-

based lstm for aspect-level sentiment classification. In Jian Su,

250

http://arxiv.org/abs/1003.1141
http://arxiv.org/abs/1003.1141
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://papers.nips.cc/paper/7181-attention-is-all-you-need
http://dblp.uni-trier.de/db/conf/nips/nips2015.html#VinyalsKKPSH15
http://dblp.uni-trier.de/db/conf/nips/nips2015.html#VinyalsKKPSH15
https://www.aclweb.org/anthology/W18-5446
https://www.aclweb.org/anthology/W18-5446


REFERENCES

Xavier Carreras, and Kevin Duh, editors, EMNLP, pages 606–615.

The Association for Computational Linguistics, 2016. ISBN 978-

1-945626-25-8. URL http://dblp.uni-trier.de/db/conf/

emnlp/emnlp2016.html#WangHZZ16.

AlexWarstadt and Samuel R. Bowman. Can neural networks acquire a struc-

tural bias from raw linguistic data?, 2020.

Gregor Wiedemann, Steffen Remus, Avi Chawla, and Chris Biemann. Does

BERT make any sense? interpretable word sense disambiguation with

contextualized embeddings. CoRR, abs/1909.10430, 2019. URL http:

//arxiv.org/abs/1909.10430.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage

challenge corpus for sentence understanding through inference. CoRR,

abs/1704.05426, 2017. URL http://dblp.uni-trier.de/db/

journals/corr/corr1704.html#WilliamsNB17.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-

langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-

towicz, and Jamie Brew. Huggingface’s transformers: State-of-the-art nat-

ural language processing. CoRR, abs/1910.03771, 2019. URL http:

//arxiv.org/abs/1910.03771.

Yige Xu, Xipeng Qiu, Ligao Zhou, and Xuanjing Huang. Improving bert fine-

tuning via self-ensemble and self-distillation, 2020.

Dani Yogatama, Manaal Faruqui, Chris Dyer, and Noah A. Smith. Learn-

ing word representations with hierarchical sparse coding. CoRR,

251

http://dblp.uni-trier.de/db/conf/emnlp/emnlp2016.html#WangHZZ16
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2016.html#WangHZZ16
http://arxiv.org/abs/1909.10430
http://arxiv.org/abs/1909.10430
http://dblp.uni-trier.de/db/journals/corr/corr1704.html#WilliamsNB17
http://dblp.uni-trier.de/db/journals/corr/corr1704.html#WilliamsNB17
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771


REFERENCES

abs/1406.2035, 2014. URL http://dblp.uni-trier.de/db/

journals/corr/corr1406.html#YogatamaFDS14.

Maayan Zhitomirsky-Geffet and Ido Dagan. Bootstrapping distribu-

tional feature vector quality. Computational Linguistics, 35(3):435–

461, 2009. URL http://dblp.uni-trier.de/db/journals/

coling/coling35.html#Zhitomirsky-GeffetD09.

252

http://dblp.uni-trier.de/db/journals/corr/corr1406.html#YogatamaFDS14
http://dblp.uni-trier.de/db/journals/corr/corr1406.html#YogatamaFDS14
http://dblp.uni-trier.de/db/journals/coling/coling35.html#Zhitomirsky-GeffetD09
http://dblp.uni-trier.de/db/journals/coling/coling35.html#Zhitomirsky-GeffetD09


Appendix A
Algorithms of this dissertation

The following Figures (A.1 - A.3) are the algorithms that I used in this disser-

tation.

253



Figure A.1: Algorithm of the word-level embedding

254



APPENDIX A. ALGORITHMS OF THIS DISSERTATION

Figure A.2: Algorithm of the similarity-based estimation

255



Figure A.3: Algorithm of the BERT training

256



Appendix B
Code for the word-level embedding models

The following scripts are the code that I used for the training of traditional

word embedding models (i.e., PPMI-SVD, SGNS) and similarity-based estima-

tion.

Listing B.1: Python code for the word embedding by using the PPMI-SVD

model

1

2 class PPMI_SVD_Algorithm:

3

4 def __init__ (self, fold, postposition, postposition_ko,

window):

5 self.fold = fold

6 self.postposition = postposition

7 self.postposition_ko = postposition_ko

8 self.window = window

9

10 def PPMI_SVD_Calculation(self):

11

12 from collections import Counter

13 import itertools

257



14 import nltk

15 from nltk.corpus import stopwords

16 import numpy as np

17 import pandas as pd

18 from scipy import sparse

19 from scipy.sparse import linalg

20 from sklearn.preprocessing import normalize

21 from sklearn.metrics.pairwise import cosine_similarity

22

23 trainDir = "../../Data/Input/Fold/" + str(self.fold) +

"Fold/"+ self.postposition +"_train_" + str(self.

fold) + ".csv"

24

25 # data load

26 df = pd.read_csv(trainDir)

27 print(df.head())

28 headlines = df['Sentence'].tolist()

29 headlines = [[tok for tok in headline.split()] for

headline in headlines]

30 # remove single word headlines

31 headlines = [hl for hl in headlines if len(hl) > 1]

32 # show results

33 print(headlines[0:20])

34

35 # calculate a unigram vocabulary

36 tok2indx = dict()

37 unigram_counts = Counter()

38 for ii, headline in enumerate(headlines):

39 if ii % 200000 == 0:

40 print(f'finished {ii / len(headlines):.2%} of

headlines')

258



APPENDIX B. CODE FOR THE WORD-LEVEL EMBEDDING MODELS

41 for token in headline:

42 unigram_counts[token] += 1

43 if token not in tok2indx:

44 tok2indx[token] = len(tok2indx)

45 indx2tok = {indx: tok for tok, indx in tok2indx.items()

}

46 print('done')

47 print('vocabulary size: {}'.format(len(unigram_counts))

)

48 print('most common: {}'.format(unigram_counts.

most_common(10)))

49

50 wordType = len(unigram_counts);

51

52 for j in range(1, self.window):

53 # Skipgrams

54 back_window = j

55 front_window = j

56 skipgram_counts = Counter()

57 for iheadline, headline in enumerate(headlines):

58 for ifw, fw in enumerate(headline):

59 icw_min = max(0, ifw - back_window)

60 icw_max = min(len(headline) - 1, ifw +

front_window)

61 icws = [ii for ii in range(icw_min, icw_max

+ 1) if ii != ifw]

62 for icw in icws:

63 skipgram = (headline[ifw], headline[icw

])

64 skipgram_counts[skipgram] += 1

65 if iheadline % 200000 == 0:

259



66 print(f'finished {iheadline / len(headlines

):.2%} of headlines')

67 print('done')

68 print('number of skipgrams: {}'.format(len(

skipgram_counts)))

69 print('most common: {}'.format(skipgram_counts.

most_common(10)))

70

71 # Word-Word Count Matrix

72 row_indxs = []

73 col_indxs = []

74 dat_values = []

75 ii = 0

76 for (tok1, tok2), sg_count in skipgram_counts.items

():

77 ii += 1

78 if ii % 1000000 == 0:

79 print(f'finished {ii / len(skipgram_counts)

:.2%} of skipgrams')

80 tok1_indx = tok2indx[tok1]

81 tok2_indx = tok2indx[tok2]

82

83 row_indxs.append(tok1_indx)

84 col_indxs.append(tok2_indx)

85 dat_values.append(sg_count)

86

87 wwcnt_mat = sparse.csr_matrix((dat_values, (

row_indxs, col_indxs)))

88 print('done')

89

90 # normalize each row using L2 norm

260



APPENDIX B. CODE FOR THE WORD-LEVEL EMBEDDING MODELS

91 wwcnt_norm_mat = normalize(wwcnt_mat, norm='l2',

axis=1)

92

93 ##Word Similarity with Sparse Count Matrices

94 def ww_sim(word, mat, topn=len(tok2indx)):

95 indx = tok2indx[word]

96 if isinstance(mat, sparse.csr_matrix):

97 v1 = mat.getrow(indx)

98 else:

99 v1 = mat[indx:indx + 1, :]

100 sims = cosine_similarity(mat, v1).flatten()

101 sindxs = np.argsort(-sims)

102 sim_word_scores = [(indx2tok[sindx], sims[sindx

]) for sindx in sindxs[0:topn]]

103 return sim_word_scores

104

105 # Pointwise Mutual Information Matrices

106 num_skipgrams = wwcnt_mat.sum()

107 assert (sum(skipgram_counts.values()) ==

num_skipgrams)

108

109 # for creating sparce matrices

110 row_indxs = []

111 col_indxs = []

112

113 pmi_dat_values = []

114 ppmi_dat_values = []

115 spmi_dat_values = []

116 sppmi_dat_values = []

117

118 # smoothing

261



119 alpha = 0.75

120 nca_denom = np.sum(np.array(wwcnt_mat.sum(axis=0)).

flatten() ** alpha)

121 sum_over_words = np.array(wwcnt_mat.sum(axis=0)).

flatten()

122 sum_over_words_alpha = sum_over_words ** alpha

123 sum_over_contexts = np.array(wwcnt_mat.sum(axis=1))

.flatten()

124

125 ii = 0

126 for (tok1, tok2), sg_count in skipgram_counts.items

():

127 ii += 1

128 if ii % 1000000 == 0:

129 print(f'finished {ii / len(skipgram_counts)

:.2%} of skipgrams')

130 tok1_indx = tok2indx[tok1]

131 tok2_indx = tok2indx[tok2]

132

133 nwc = sg_count

134 Pwc = nwc / num_skipgrams

135 nw = sum_over_contexts[tok1_indx]

136 Pw = nw / num_skipgrams

137 nc = sum_over_words[tok2_indx]

138 Pc = nc / num_skipgrams

139

140 nca = sum_over_words_alpha[tok2_indx]

141 Pca = nca / nca_denom

142

143 pmi = np.log2(Pwc / (Pw * Pc))

144 ppmi = max(pmi, 0)

262



APPENDIX B. CODE FOR THE WORD-LEVEL EMBEDDING MODELS

145

146 spmi = np.log2(Pwc / (Pw * Pca))

147 sppmi = max(spmi, 0)

148

149 row_indxs.append(tok1_indx)

150 col_indxs.append(tok2_indx)

151 pmi_dat_values.append(pmi)

152 ppmi_dat_values.append(ppmi)

153 spmi_dat_values.append(spmi)

154 sppmi_dat_values.append(sppmi)

155

156 pmi_mat = sparse.csr_matrix((pmi_dat_values, (

row_indxs, col_indxs)))

157 ppmi_mat = sparse.csr_matrix((ppmi_dat_values, (

row_indxs, col_indxs)))

158 spmi_mat = sparse.csr_matrix((spmi_dat_values, (

row_indxs, col_indxs)))

159 sppmi_mat = sparse.csr_matrix((sppmi_dat_values, (

row_indxs, col_indxs)))

160

161 print('done')

162

163 # Singular Value Decomposition

164 matrix_use = ppmi_mat

165

166 if wordType < 500:

167 embedding_size = wordType - 1

168 else:

169 embedding_size = 500

170

263



171 uu, ss, vv = linalg.svds(matrix_use, embedding_size

)

172 print('vocab size: {}'.format(len(unigram_counts)))

173 print('embedding size: {}'.format(embedding_size))

174 print('uu.shape: {}'.format(uu.shape))

175 print('ss.shape: {}'.format(ss.shape))

176 print('vv.shape: {}'.format(vv.shape))

177

178 unorm = uu / np.sqrt(np.sum(uu * uu, axis=1,

keepdims=True))

179 vnorm = vv / np.sqrt(np.sum(vv * vv, axis=0,

keepdims=True))

180 word_vecs = uu + vv.T

181 word_vecs_norm = word_vecs / np.sqrt(np.sum(

word_vecs * word_vecs, axis=1, keepdims=True))

182

183 print(word_vecs_norm)

184

185 from sklearn.manifold import TSNE

186 X_embedded = TSNE(n_components=2, random_state=0).

fit_transform(word_vecs_norm)

187

188 wordList = []

189 wordnum = 0

190 for typeeach in indx2tok:

191 wordList.append(indx2tok[wordnum])

192 wordnum += 1

193

194 tsne_df = pd.DataFrame({'X': X_embedded[:, 0], 'Y':

X_embedded[:, 1], 'Word': wordList})

264



APPENDIX B. CODE FOR THE WORD-LEVEL EMBEDDING MODELS

195 tsne_df.to_csv("../../Data/Output/PPMI_SVD/" + self

.postposition + "/t-SNE/" + self.postposition +

"_tSNE_" + str(

196 j) + ".csv")

197

198 TSNE_dic = {}

199

200 typenum = 0

201 for typeeach in indx2tok:

202 TSNE_dic[indx2tok[typenum]] = [X_embedded[

typenum][0], X_embedded[typenum][1]]

203 typenum = typenum + 1

204

205 functionEy = ["LOC", "GOL", "EFF", "CRT", "THM", "

INS", "AGT", "FNS"]

206 functionEyse = ["SRC", "LOC"]

207 functionLo = ["FNS", "INS", "DIR", "EFF", "CRT", "

LOC"]

208

209 if self.postposition == "Ey":

210 for function in functionEy:

211 word = self.postposition_ko + "/JKB" + "_"

+ function

212 from numpy import dot

213 from numpy.linalg import norm

214 import numpy as np

215 def cos_sim(A, B):

216 return dot(A, B) / (norm(A) * norm(B))

217 target = np.array(TSNE_dic[word])

218 outDir = "../../Data/Output/PPMI_SVD/" +

self.postposition + "/Similarity/" +

265



self.postposition + "_" + function + "

_Similarity_" + str(

219 j) + ".csv"

220 f = open(outDir, 'w')

221 tsnenum = 0

222 for typeeach in indx2tok:

223 if indx2tok[tsnenum] != self.

postposition:

224 source = np.array(TSNE_dic[indx2tok

[tsnenum]])

225 normal_sim = (cos_sim(target,

source) + 1) / 2

226 data = str(indx2tok[tsnenum]) + ","

+ str(normal_sim)

227 f.write(data + "\n")

228 tsnenum = tsnenum + 1

229 f.close()

230

231 elif self.postposition == "Eyse":

232 for function in functionEyse:

233 word = self.postposition_ko + "/JKB" + "_"

+ function

234 from numpy import dot

235 from numpy.linalg import norm

236 import numpy as np

237 def cos_sim(A, B):

238 return dot(A, B) / (norm(A) * norm(B))

239 target = np.array(TSNE_dic[word])

240 outDir = "../../Data/Output/PPMI_SVD/" +

self.postposition + "/Similarity/" +

self.postposition + "_" + function + "

266



APPENDIX B. CODE FOR THE WORD-LEVEL EMBEDDING MODELS

_Similarity_" + str(

241 j) + ".csv"

242 f = open(outDir, 'w')

243 tsnenum = 0

244 for typeeach in indx2tok:

245 if indx2tok[tsnenum] != self.

postposition:

246 source = np.array(TSNE_dic[indx2tok

[tsnenum]])

247 normal_sim = (cos_sim(target,

source) + 1) / 2

248 data = str(indx2tok[tsnenum]) + ","

+ str(normal_sim)

249 f.write(data + "\n")

250 tsnenum = tsnenum + 1

251 f.close()

252

253 elif self.postposition == "Lo":

254 for function in functionLo:

255 word = self.postposition_ko + "/JKB" + "_"

+ function

256 from numpy import dot

257 from numpy.linalg import norm

258 import numpy as np

259 def cos_sim(A, B):

260 return dot(A, B) / (norm(A) * norm(B))

261 target = np.array(TSNE_dic[word])

262 outDir = "../../Data/Output/PPMI_SVD/" +

self.postposition + "/Similarity/" +

self.postposition + "_" + function + "

_Similarity_" + str(

267



263 j) + ".csv"

264 f = open(outDir, 'w')

265 tsnenum = 0

266 for typeeach in indx2tok:

267 if indx2tok[tsnenum] != self.

postposition:

268 source = np.array(TSNE_dic[indx2tok

[tsnenum]])

269 normal_sim = (cos_sim(target,

source) + 1) / 2

270 data = str(indx2tok[tsnenum]) + ","

+ str(normal_sim)

271 f.write(data + "\n")

272 tsnenum = tsnenum + 1

273 f.close()

268



APPENDIX B. CODE FOR THE WORD-LEVEL EMBEDDING MODELS

Listing B.2: Python code for the word embedding by using the SGNS model

1 class SGNS_Algorithm:

2

3 def __init__(self, fold, postposition, postposition_ko,

window):

4 self.fold = fold

5 self.postposition = postposition

6 self.postposition_ko = postposition_ko

7 self.window = window

8

9 def SGNS_Calculation(self):

10

11 from collections import Counter

12 import itertools

13 import nltk

14 from nltk.corpus import stopwords

15 import numpy as np

16 import pandas as pd

17 from scipy import sparse

18 from scipy.sparse import linalg

19 from sklearn.preprocessing import normalize

20 from sklearn.metrics.pairwise import cosine_similarity

21

22 trainDir = "../../Data/Input/Fold/" + str(self.fold) +

"Fold/" + self.postposition + "_train_" + str(self.

fold) + ".csv"

23

24 # data load

25 df = pd.read_csv(trainDir)

26 print(df.head())

269



27 headlines = df['Sentence'].tolist()

28 headlines = [[tok for tok in headline.split()] for

headline in headlines]

29 # remove single word headlines

30 headlines = [hl for hl in headlines if len(hl) > 1]

31 # show results

32 print(headlines[0:20])

33

34 # calculate a unigram vocabulary

35 tok2indx = dict()

36 unigram_counts = Counter()

37 for ii, headline in enumerate(headlines):

38 if ii % 200000 == 0:

39 print(f'finished {ii / len(headlines):.2%} of

headlines')

40 for token in headline:

41 unigram_counts[token] += 1

42 if token not in tok2indx:

43 tok2indx[token] = len(tok2indx)

44 indx2tok = {indx: tok for tok, indx in tok2indx.items()

}

45 print('done')

46 print('vocabulary size: {}'.format(len(unigram_counts))

)

47 print('most common: {}'.format(unigram_counts.

most_common(10)))

48

49 wordType = len(unigram_counts);

50

51 for j in range(1, self.window):

52

270



APPENDIX B. CODE FOR THE WORD-LEVEL EMBEDDING MODELS

53 from gensim.models import Word2Vec

54

55 if wordType < 500:

56 embedding_size = wordType - 1

57 else:

58 embedding_size = 500

59

60 embedding_model = Word2Vec(headlines, size=

embedding_size, window=j, min_count=0, workers=4

, iter=100, sg=1, negative=15, ns_exponent=0.75)

61

62 matrix = []

63 indxnum = 0

64 for typeeach in indx2tok:

65 line = list(embedding_model[indx2tok[typeeach

]])

66 matrix.append(line)

67 indxnum = indxnum + 1

68

69 embedded_matrix = np.array(matrix, dtype=np.float64

)

70

71 print(embedded_matrix)

72

73 from sklearn.manifold import TSNE

74 X_embedded = TSNE(n_components=2, random_state=0).

fit_transform(embedded_matrix)

75

76 wordList = []

77 wordnum = 0

78 for typeeach in indx2tok:

271



79 wordList.append(indx2tok[wordnum])

80 wordnum += 1

81

82 tsne_df = pd.DataFrame({'X': X_embedded[:, 0], 'Y':

X_embedded[:, 1], 'Word': wordList})

83 tsne_df.to_csv(

84 "../../Data/Output/SGNS/" + self.postposition +

"/t-SNE/" + self.postposition + "_tSNE_" +

str(

85 j) + ".csv")

86

87 # Word Similarity with Sparse Count Matrices

88 def ww_sim(word, mat, topn=len(tok2indx)):

89 indx = tok2indx[word]

90 if isinstance(mat, sparse.csr_matrix):

91 v1 = mat.getrow(indx)

92 else:

93 v1 = mat[indx:indx + 1, :]

94 sims = cosine_similarity(mat, v1).flatten()

95 sindxs = np.argsort(-sims)

96 sim_word_scores = [(indx2tok[sindx], sims[sindx

]) for sindx in sindxs[0:topn]]

97 return sim_word_scores

98

99 # Word Similarity

100 def word_sim_report(word, sim_mat):

101 output = {}

102 sim_word_scores = ww_sim(word, embedded_matrix)

103 for sim_word, sim_score in sim_word_scores:

104 output[sim_word] = ((sim_score + 1) / 2)

105 return output

272



APPENDIX B. CODE FOR THE WORD-LEVEL EMBEDDING MODELS

106

107 TSNE_dic = {}

108

109 typenum = 0

110 for typeeach in indx2tok:

111 TSNE_dic[indx2tok[typenum]] = [X_embedded[

typenum][0], X_embedded[typenum][1]]

112 typenum = typenum + 1

113

114 functionEy = ["LOC", "GOL", "EFF", "CRT", "THM", "

INS", "AGT", "FNS"]

115 functionEyse = ["SRC", "LOC"]

116 functionLo = ["FNS", "INS", "DIR", "EFF", "CRT", "

LOC"]

117

118 if self.postposition == "Ey":

119 for function in functionEy:

120 word = self.postposition_ko + "/JKB" + "_"

+ function

121 from numpy import dot

122 from numpy.linalg import norm

123 import numpy as np

124 def cos_sim(A, B):

125 return dot(A, B) / (norm(A) * norm(B))

126 target = np.array(TSNE_dic[word])

127 outDir = "../../Data/Output/SGNS/" + self.

postposition + "/Similarity/" + self.

postposition + "_" + function + "

_Similarity_" + str(

128 j) + ".csv"

129 f = open(outDir, 'w')

273



130 tsnenum = 0

131 for typeeach in indx2tok:

132 if indx2tok[tsnenum] != self.

postposition:

133 source = np.array(TSNE_dic[indx2tok

[tsnenum]])

134 normal_sim = (cos_sim(target,

source) + 1) / 2

135 data = str(indx2tok[tsnenum]) + ","

+ str(normal_sim)

136 f.write(data + "\n")

137 tsnenum = tsnenum + 1

138 f.close()

139

140

141

142

143 elif self.postposition == "Eyse":

144 for function in functionEyse:

145 word = self.postposition_ko + "/JKB" + "_"

+ function

146 from numpy import dot

147 from numpy.linalg import norm

148 import numpy as np

149 def cos_sim(A, B):

150 return dot(A, B) / (norm(A) * norm(B))

151 target = np.array(TSNE_dic[word])

152 outDir = "../../Data/Output/SGNS/" + self.

postposition + "/Similarity/" + self.

postposition + "_" + function + "

_Similarity_" + str(

274



APPENDIX B. CODE FOR THE WORD-LEVEL EMBEDDING MODELS

153 j) + ".csv"

154 f = open(outDir, 'w')

155 tsnenum = 0

156 for typeeach in indx2tok:

157 if indx2tok[tsnenum] != self.

postposition:

158 source = np.array(TSNE_dic[indx2tok

[tsnenum]])

159 normal_sim = (cos_sim(target,

source) + 1) / 2

160 data = str(indx2tok[tsnenum]) + ","

+ str(normal_sim)

161 f.write(data + "\n")

162 tsnenum = tsnenum + 1

163 f.close()

164

165 elif self.postposition == "Lo":

166 for function in functionLo:

167 word = self.postposition_ko + "/JKB" + "_"

+ function

168 from numpy import dot

169 from numpy.linalg import norm

170 import numpy as np

171 def cos_sim(A, B):

172 return dot(A, B) / (norm(A) * norm(B))

173 target = np.array(TSNE_dic[word])

174 outDir = "../../Data/Output/SGNS/" + self.

postposition + "/Similarity/" + self.

postposition + "_" + function + "

_Similarity_" + str(

175 j) + ".csv"

275



176 f = open(outDir, 'w')

177 tsnenum = 0

178 for typeeach in indx2tok:

179 if indx2tok[tsnenum] != self.

postposition:

180 source = np.array(TSNE_dic[indx2tok

[tsnenum]])

181 normal_sim = (cos_sim(target,

source) + 1) / 2

182 data = str(indx2tok[tsnenum]) + ","

+ str(normal_sim)

183 f.write(data + "\n")

184 tsnenum = tsnenum + 1

185 f.close()

276



APPENDIX B. CODE FOR THE WORD-LEVEL EMBEDDING MODELS

Listing B.3: Python code for the similarity-based estimation

1 class SBEs:

2

3 def __init__(self, method, postposition, postposition_ko,

fold, window, function):

4 self.method = method

5 self.postposition = postposition

6 self.postposition_ko = postposition_ko

7 self.fold = fold

8 self.window = window

9 self.function = function

10

11 def Processing(self):

12 import numpy as np

13 import pandas as pd

14

15 functions = self.function

16 functionDicDic = {}

17

18 for function in functions:

19 functionDic = {}

20 functionDir = "../../Data/Output/" + self.method +

"/" + self.postposition + "/" + str(self.fold) +

"Fold/" + self.postposition + "_" + function +

"_window_" + str(self.window) + ".csv"

21

22 dfFunction = pd.read_csv(functionDir)

23 words = dfFunction['word'].tolist()

24 sims = dfFunction['similarity'].tolist()

25 for k in range(0, len(words)):

277



26 functionDic[words[k]] = sims[k]

27 functionDicDic[function] = functionDic

28

29 testDir = "../../Data/Input/Fold/" + str(self.fold) + "

Fold/" + self.postposition + "_test_" + str(self.

fold) + ".csv"

30

31 df = pd.read_csv(testDir)

32 headlines = df['Sentence'].tolist()

33

34 countDic = {}

35 frequencyDic = {}

36

37 countDic["Total"] = 0

38 frequencyDic["Total"] = 0

39

40 for function in functions:

41 countDic[function] = 0

42 frequencyDic[function] = 0

43

44 for sentence in headlines:

45 originClass = ""

46 token = sentence.split(" ")

47 for eachToken in token:

48 if (self.postposition_ko + "/") in eachToken

and "JKB_" in eachToken:

49 originClass = eachToken.replace((self.

postposition_ko + "/"), "").replace("

JKB_", "")

50

51 classifiedFunc = {}

278



APPENDIX B. CODE FOR THE WORD-LEVEL EMBEDDING MODELS

52

53 funcScore = {}

54 matchNum = 0

55

56 for eachToken in token:

57 if functionDicDic.get("LOC").get(eachToken.

strip()) == None or ((self.postposition_ko +

"/") in eachToken and "JKB_" in eachToken):

58 pass

59 else:

60 matchNum = matchNum + 1

61 for function in functions:

62 if funcScore.get(function) == None:

63 funcScore[function] =

functionDicDic.get(function).get

(eachToken.strip())

64 else:

65 funcScore[function] = funcScore.get

(function) + functionDicDic.get(

function).get(eachToken.strip())

66

67 for function in functions:

68 classifiedFunc[function] = funcScore.get(

function) / matchNum

69

70 dic_max = max(classifiedFunc.values())

71

72 for x, y in classifiedFunc.items():

73 if y == dic_max:

74 for function in functions:

75 if originClass == function and

279



originClass == x:

76 countDic[function] = countDic.get(

function) + 1

77 if originClass == x:

78 countDic["Total"] = countDic.get("Total

") + 1

79

80 frequencyDic["Total"] = frequencyDic.get("Total") +

1

81

82 for function in functions:

83 if originClass == function:

84 frequencyDic[function] = frequencyDic.get(

function) + 1

85

86 finalResult = {}

87

88 totalAccuracy = countDic.get("Total") / frequencyDic.

get("Total")

89 finalResult["Total"] = totalAccuracy

90

91 for function in functions:

92 funcAccuracy = countDic.get(function) /

frequencyDic.get(function)

93 finalResult[function] = funcAccuracy

94

95 averageAccuracy = 0

96 for function in functions:

97 averageAccuracy = averageAccuracy+finalResult.get(

function)

98

280



APPENDIX B. CODE FOR THE WORD-LEVEL EMBEDDING MODELS

99 finalResult["TotalAverage"] = averageAccuracy / len(

functions)

100

101 return finalResult

281





Appendix C
Code for the sentence-level embedding

model

The following script is the code that I used for the training of contextualized

word embedding model (i.e., BERT).

Listing C.1: Python code for the BERT training by using the BertForSequence-

Classification

1 class BERT_Algorithm:

2

3 def __init__(self, postposition, lablesNum):

4 self.postposition = postposition

5 self.lablesNum = lablesNum

6

7 def BERT_Calculation(self):

8

9 import tensorflow as tf

10 # Get the GPU device name.

11 device_name = tf.test.gpu_device_name()

12 # The device name should look like the following:

13 if device_name == '/device:GPU:0':

283



14 print('Found GPU at: {}'.format(device_name))

15 else:

16 raise SystemError('GPU device not found')

17

18 import torch

19 # If there's a GPU available...

20 if torch.cuda.is_available():

21 # Tell PyTorch to use the GPU.

22 device = torch.device("cuda")

23 print('There are %d GPU(s) available.' % torch.cuda

.device_count())

24 print('We will use the GPU:', torch.cuda.

get_device_name(0))

25 # If not...

26 else:

27 print('No GPU available, using the CPU instead.')

28 device = torch.device("cpu")

29

30 !pip install transformers

31

32 # Mount Google Drive to this Notebook instance.

33 from google.colab import drive

34 drive.mount('/content/drive')

35

36 import tensorflow as tf

37 import torch

38 from transformers import BertTokenizer

39 from transformers import BertForSequenceClassification,

AdamW, BertConfig

40 from transformers import

get_linear_schedule_with_warmup

284



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

41 from torch.utils.data import TensorDataset, DataLoader,

RandomSampler, SequentialSampler

42 from keras.preprocessing.sequence import pad_sequences

43 from sklearn.model_selection import train_test_split

44 import pandas as pd

45 import numpy as np

46 import random

47 import time

48 import datetime

49

50 fileDir = "drive/My Drive/BERT/SM/KoBERT/Postposition/

Data/test_"+self.postposition+".csv"

51 fr = open(fileDir, 'r')

52 contents= fr.readlines()

53 fr.close()

54

55 test = pd.DataFrame(columns=('index', 'Label', '

Sentence'))

56 i = 0

57 index = ""

58 label = ""

59 sentence = ""

60 for content in contents:

61 if i == 0:

62 pass

63 else:

64 infos = content.split(",")

65 index = infos[0]

66 label = int(infos[1])

67 sentence = infos[2].replace("\n","")

68 test.loc[i] = [index, label, sentence]

285



69 i = i + 1

70

71 fileDir = "drive/My Drive/BERT/SM/KoBERT/Postposition/

Data/train_"+self.postposition+".csv"

72 fr = open(fileDir, 'r')

73 contents= fr.readlines()

74 fr.close()

75 train = pd.DataFrame(columns=('index', 'Label', '

Sentence'))

76 i = 0

77 index = ""

78 label = ""

79 sentence = ""

80 for content in contents:

81 if i == 0:

82 pass

83 else:

84 infos = content.split(",")

85 index = infos[0]

86 label = int(infos[1])

87 sentence = infos[2].replace("\n","")

88 train.loc[i] = [index, label, sentence]

89 i = i + 1

90

91 sentences = train['Sentence']

92 sentences = ["[CLS] " + str(sentence) + " [SEP]" for

sentence in sentences]

93

94 labels = train['Label'].values

95 labels_re = []

96 for label in labels:

286



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

97 labels_re.append(label)

98 labels = labels_re

99

100 tokenizer = KoBertTokenizer.from_pretrained('monologg/

kobert')

101 tokenized_texts = [tokenizer.tokenize(sent) for sent in

sentences]

102

103 MAX_LEN = 128

104 input_ids = [tokenizer.convert_tokens_to_ids(x) for x

in tokenized_texts]

105 input_ids = pad_sequences(input_ids, maxlen=MAX_LEN,

dtype="long", truncating="post", padding="post")

106

107 attention_masks = []

108 for seq in input_ids:

109 seq_mask = [float(i>0) for i in seq]

110 attention_masks.append(seq_mask)

111

112 train_inputs, validation_inputs, train_labels,

validation_labels = train_test_split(input_ids,

labels,random_state=2018,test_size=0.1)

113 train_masks, validation_masks, _, _ = train_test_split(

attention_masks,input_ids,random_state=2018,

test_size=0.1)

114 train_inputs = torch.tensor(train_inputs)

115 train_labels = torch.tensor(train_labels)

116 train_masks = torch.tensor(train_masks)

117 validation_inputs = torch.tensor(validation_inputs)

118 validation_labels = torch.tensor(validation_labels)

119 validation_masks = torch.tensor(validation_masks)

287



120

121 batch_size = 32

122

123 train_data = TensorDataset(train_inputs, train_masks,

train_labels)

124 train_sampler = RandomSampler(train_data)

125 train_dataloader = DataLoader(train_data, sampler=

train_sampler, batch_size=batch_size)

126 validation_data = TensorDataset(validation_inputs,

validation_masks, validation_labels)

127 validation_sampler = SequentialSampler(validation_data)

128 validation_dataloader = DataLoader(validation_data,

sampler=validation_sampler, batch_size=batch_size)

129

130 sentences = test['Sentence']

131 sentences = ["[CLS] " + str(sentence) + " [SEP]" for

sentence in sentences]

132

133 labels = test['Label'].values

134 labels_re = []

135 for label in labels:

136 labels_re.append(label)

137 labels = labels_re

138

139 tokenizer = KoBertTokenizer.from_pretrained('monologg/

kobert')

140 tokenized_texts = [tokenizer.tokenize(sent) for sent in

sentences]

141

142 MAX_LEN = 128

288



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

143 input_ids = [tokenizer.convert_tokens_to_ids(x) for x

in tokenized_texts]

144 input_ids = pad_sequences(input_ids, maxlen=MAX_LEN,

dtype="long", truncating="post", padding="post")

145

146 attention_masks = []

147

148 for seq in input_ids:

149 seq_mask = [float(i>0) for i in seq]

150 attention_masks.append(seq_mask)

151 test_inputs = torch.tensor(input_ids)

152 test_labels = torch.tensor(labels)

153 test_masks = torch.tensor(attention_masks)

154

155 batch_size = 32

156

157 test_data = TensorDataset(test_inputs, test_masks,

test_labels)

158 test_sampler = RandomSampler(test_data)

159 test_dataloader = DataLoader(test_data, sampler=

test_sampler, batch_size=batch_size)

160 test_dataloader

161

162 model = BertForSequenceClassification.from_pretrained("

monologg/kobert", num_labels=self.lablesNum)

163 model.cuda()

164

165 def format_time(elapsed):

166 elapsed_rounded = int(round((elapsed)))

167 return str(datetime.timedelta(seconds=

elapsed_rounded))

289



168

169 optimizer = AdamW(model.parameters(),lr = 2e-5,eps = 1e

-8)

170 epochs = 50

171 total_steps = len(train_dataloader) * epochs

172 scheduler = get_linear_schedule_with_warmup(optimizer,

num_warmup_steps = 0,num_training_steps =

total_steps)

173

174 seed_val = 42

175 random.seed(seed_val)

176 np.random.seed(seed_val)

177 torch.manual_seed(seed_val)

178 torch.cuda.manual_seed_all(seed_val)

179

180 if self.postposition == "Ey":

181

182 def flat_accuracy(preds, labels):

183 pred_flat = np.argmax(preds, axis=1).flatten()

184 labels_flat = labels.flatten()

185 return np.sum(pred_flat == labels_flat) / len(

labels_flat)

186

187 def FNS_flat_accuracy(preds, labels):

188 pred_flat = np.argmax(preds, axis=1).flatten()

189 labels_flat = labels.flatten()

190 match_num = 0

191 func_num = 0

192 for i in range(0,len(pred_flat)):

193 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 0):

290



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

194 match_num += 1

195 if labels_flat[i] == 0:

196 func_num += 1

197 if match_num == 0 or func_num == 0:

198 return 0

199 else:

200 return match_num / func_num

201

202 def INS_flat_accuracy(preds, labels):

203 pred_flat = np.argmax(preds, axis=1).flatten()

204 labels_flat = labels.flatten()

205 match_num = 0

206 func_num = 0

207 for i in range(0,len(pred_flat)):

208 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 1):

209 match_num += 1

210 if labels_flat[i] == 1:

211 func_num += 1

212 if match_num == 0 or func_num == 0:

213 return 0

214 else:

215 return match_num / func_num

216

217 def GOL_flat_accuracy(preds, labels):

218 pred_flat = np.argmax(preds, axis=1).flatten()

219 labels_flat = labels.flatten()

220 match_num = 0

221 func_num = 0

222 for i in range(0,len(pred_flat)):

291



223 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 2):

224 match_num += 1

225 if labels_flat[i] == 2:

226 func_num += 1

227 if match_num == 0 or func_num == 0:

228 return 0

229 else:

230 return match_num / func_num

231

232 def EFF_flat_accuracy(preds, labels):

233 pred_flat = np.argmax(preds, axis=1).flatten()

234 labels_flat = labels.flatten()

235 match_num = 0

236 func_num = 0

237 for i in range(0,len(pred_flat)):

238 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 3):

239 match_num += 1

240 if labels_flat[i] == 3:

241 func_num += 1

242 if match_num == 0 or func_num == 0:

243 return 0

244 else:

245 return match_num / func_num

246

247 def CRT_flat_accuracy(preds, labels):

248 pred_flat = np.argmax(preds, axis=1).flatten()

249 labels_flat = labels.flatten()

250 match_num = 0

251 func_num = 0

292



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

252 for i in range(0,len(pred_flat)):

253 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 4):

254 match_num += 1

255 if labels_flat[i] == 4:

256 func_num += 1

257 if match_num == 0 or func_num == 0:

258 return 0

259 else:

260 return match_num / func_num

261

262 def LOC_flat_accuracy(preds, labels):

263 pred_flat = np.argmax(preds, axis=1).flatten()

264 labels_flat = labels.flatten()

265 match_num = 0

266 func_num = 0

267 for i in range(0,len(pred_flat)):

268 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 5):

269 match_num += 1

270 if labels_flat[i] == 5:

271 func_num += 1

272 if match_num == 0 or func_num == 0:

273 return 0

274 else:

275 return match_num / func_num

276

277 def AGT_flat_accuracy(preds, labels):

278 pred_flat = np.argmax(preds, axis=1).flatten()

279 labels_flat = labels.flatten()

280 match_num = 0

293



281 func_num = 0

282 for i in range(0,len(pred_flat)):

283 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 6):

284 match_num += 1

285 if labels_flat[i] == 6:

286 func_num += 1

287 if match_num == 0 or func_num == 0:

288 return 0

289 else:

290 return match_num / func_num

291

292 def THM_flat_accuracy(preds, labels):

293 pred_flat = np.argmax(preds, axis=1).flatten()

294 labels_flat = labels.flatten()

295 match_num = 0

296 func_num = 0

297 for i in range(0,len(pred_flat)):

298 #print(pred_flat[i]," / ",labels_flat[i])

299 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 7):

300 match_num += 1

301 if labels_flat[i] == 7:

302 func_num += 1

303 if match_num == 0 or func_num == 0:

304 return 0

305 else:

306 return match_num / func_num

307

308 model.zero_grad()

309

294



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

310 final_info = {}

311

312 for epoch_i in range(0, epochs):

313

314 print("")

315 print('======== Epoch {:} / {:} ========'.

format(epoch_i + 1, epochs))

316 print('Training...')

317

318 t0 = time.time()

319 total_loss = 0

320 model.train()

321

322 for step, batch in enumerate(train_dataloader):

323 if step % 500 == 0 and not step == 0:

324 elapsed = format_time(time.time() - t0)

325 print(' Batch {:>5,} of {:>5,}.

Elapsed: {:}.'.format(step, len(

train_dataloader), elapsed))

326

327 batch = tuple(t.to(device) for t in batch)

328 b_input_ids, b_input_mask, b_labels = batch

329 outputs = model(b_input_ids,

330 token_type_ids=None,

331 attention_mask=b_input_mask

,

332 labels=b_labels)

333

334 loss = outputs[0]

335 total_loss += loss.item()

336 loss.backward()

295



337

338 torch.nn.utils.clip_grad_norm_(model.

parameters(), 1.0)

339 optimizer.step()

340 scheduler.step()

341 model.zero_grad()

342

343 avg_train_loss = total_loss / len(

train_dataloader)

344

345 print("")

346 print(" Average training loss: {0:.2f}".format

(avg_train_loss))

347 print(" Training epcoh took: {:}".format(

format_time(time.time() - t0)))

348

349 print("")

350 print("Running Validation...")

351

352 t0 = time.time()

353

354 model.eval()

355

356 eval_loss, eval_accuracy = 0, 0

357 nb_eval_steps, nb_eval_examples = 0, 0

358 FNS_nb_eval_steps, FNS_eval_accuracy = 0, 0

359 INS_nb_eval_steps, INS_eval_accuracy = 0, 0

360 GOL_nb_eval_steps, GOL_eval_accuracy = 0, 0

361 EFF_nb_eval_steps, EFF_eval_accuracy = 0, 0

362 CRT_nb_eval_steps, CRT_eval_accuracy = 0, 0

363 LOC_nb_eval_steps, LOC_eval_accuracy = 0, 0

296



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

364 AGT_nb_eval_steps, AGT_eval_accuracy = 0, 0

365 THM_nb_eval_steps, THM_eval_accuracy = 0, 0

366

367 epoch_info = {}

368

369 for batch in test_dataloader:

370 batch = tuple(t.to(device) for t in batch)

371 b_input_ids, b_input_mask, b_labels = batch

372 with torch.no_grad():

373 outputs = model(b_input_ids,

374 token_type_ids=None,

375 attention_mask=

b_input_mask)

376

377 logits = outputs[0]

378 logits = logits.detach().cpu().numpy()

379 label_ids = b_labels.to('cpu').numpy()

380

381 tmp_eval_accuracy = flat_accuracy(logits,

label_ids)

382 eval_accuracy += tmp_eval_accuracy

383 nb_eval_steps += 1

384

385 FNS_tmp_eval_accuracy = FNS_flat_accuracy(

logits, label_ids)

386 FNS_eval_accuracy += FNS_tmp_eval_accuracy

387 FNS_nb_eval_steps += 1

388

389 INS_tmp_eval_accuracy = INS_flat_accuracy(

logits, label_ids)

390 INS_eval_accuracy += INS_tmp_eval_accuracy

297



391 INS_nb_eval_steps += 1

392

393 GOL_tmp_eval_accuracy = GOL_flat_accuracy(

logits, label_ids)

394 GOL_eval_accuracy += GOL_tmp_eval_accuracy

395 GOL_nb_eval_steps += 1

396

397 EFF_tmp_eval_accuracy = EFF_flat_accuracy(

logits, label_ids)

398 EFF_eval_accuracy += EFF_tmp_eval_accuracy

399 EFF_nb_eval_steps += 1

400

401 CRT_tmp_eval_accuracy = CRT_flat_accuracy(

logits, label_ids)

402 CRT_eval_accuracy += CRT_tmp_eval_accuracy

403 CRT_nb_eval_steps += 1

404

405 LOC_tmp_eval_accuracy = LOC_flat_accuracy(

logits, label_ids)

406 LOC_eval_accuracy += LOC_tmp_eval_accuracy

407 LOC_nb_eval_steps += 1

408

409 AGT_tmp_eval_accuracy = AGT_flat_accuracy(

logits, label_ids)

410 AGT_eval_accuracy += AGT_tmp_eval_accuracy

411 AGT_nb_eval_steps += 1

412

413 THM_tmp_eval_accuracy = THM_flat_accuracy(

logits, label_ids)

414 THM_eval_accuracy += THM_tmp_eval_accuracy

415 THM_nb_eval_steps += 1

298



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

416

417 print(" Accuracy: {0:.2f}".format(

eval_accuracy/nb_eval_steps))

418 print(" Validation took: {:}".format(

format_time(time.time() - t0)))

419 print("")

420 print(" Detail accuracy ")

421 print(" FNS_Accuracy: {0:.2f}".format(

FNS_eval_accuracy/FNS_nb_eval_steps))

422 print(" INS_Accuracy: {0:.2f}".format(

INS_eval_accuracy/INS_nb_eval_steps))

423 print(" GOL_Accuracy: {0:.2f}".format(

GOL_eval_accuracy/GOL_nb_eval_steps))

424 print(" EFF_Accuracy: {0:.2f}".format(

EFF_eval_accuracy/EFF_nb_eval_steps))

425 print(" CRT_Accuracy: {0:.2f}".format(

CRT_eval_accuracy/CRT_nb_eval_steps))

426 print(" LOC_Accuracy: {0:.2f}".format(

LOC_eval_accuracy/LOC_nb_eval_steps))

427 print(" AGT_Accuracy: {0:.2f}".format(

AGT_eval_accuracy/AGT_nb_eval_steps))

428 print(" THM_Accuracy: {0:.2f}".format(

THM_eval_accuracy/THM_nb_eval_steps))

429

430 epoch_info["Total"] = round(eval_accuracy/

nb_eval_steps,3)

431 epoch_info["Loss"] = round(avg_train_loss,3)

432 epoch_info["FNS"] = round(FNS_eval_accuracy/

FNS_nb_eval_steps,3)

433 epoch_info["INS"] = round(INS_eval_accuracy/

INS_nb_eval_steps,3)

299



434 epoch_info["GOL"] = round(GOL_eval_accuracy/

GOL_nb_eval_steps,3)

435 epoch_info["EFF"] = round(EFF_eval_accuracy/

EFF_nb_eval_steps,3)

436 epoch_info["CRT"] = round(CRT_eval_accuracy/

CRT_nb_eval_steps,3)

437 epoch_info["LOC"] = round(LOC_eval_accuracy/

LOC_nb_eval_steps,3)

438 epoch_info["AGT"] = round(AGT_eval_accuracy/

AGT_nb_eval_steps,3)

439 epoch_info["THM"] = round(THM_eval_accuracy/

THM_nb_eval_steps,3)

440

441 final_info["epoch"+str(epoch_i)] = epoch_info

442

443 model.eval()

444 test_input_ids = []

445 test_input_mask = []

446 test_labels = []

447

448 num = 0

449 for step, batch in enumerate(test_data):

450 batch = tuple(t.to(device) for t in batch)

451

452 b_input_ids, b_input_mask, b_labels = batch

453 input_ids_arr = []

454 input_mask_arr = []

455

456 for i in range(0,len(b_input_ids)):

457 input_ids_arr.append(int(b_input_ids[i]))

458 input_mask_arr.append(int(b_input_mask[i]))

300



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

459

460 test_input_ids.append(input_ids_arr)

461 test_input_mask.append(input_mask_arr)

462 test_labels.append(int(b_labels))

463

464 test_input_ids = torch.tensor(test_input_ids)

465 test_input_mask = torch.tensor(test_input_mask)

466 test_labels = test_labels

467

468 test_input_ids = test_input_ids.to(device)

469 test_input_mask = test_input_mask.to(device)

470

471 with torch.no_grad():

472 outputs = model(test_input_ids,

473 token_type_ids=None,

474 attention_mask=

test_input_mask)

475

476 sentence_vecs_sum = outputs[0]

477

478 sentence_array = []

479 for i in range(0,len(sentence_vecs_sum)):

480 each_array = []

481 for j in range(0,len(sentence_vecs_sum[i])):

482 each_array.append(float(sentence_vecs_sum[i

][j]))

483 sentence_array.append(each_array)

484

485 initial_df = pd.DataFrame(sentence_array)

486

487 from sklearn.manifold import TSNE

301



488 tsne = TSNE(n_components=2, random_state=0)

489 tsne_obj= tsne.fit_transform(initial_df)

490

491 tsne_df = pd.DataFrame({'X':tsne_obj[:,0],'Y':

tsne_obj[:,1],'Label':test_labels})

492

493 import numpy as np

494 import pandas as pd

495 from plotnine import *

496

497 print("")

498 print(" Network visualization ")

499 print(ggplot(tsne_df, aes(x='X', y='Y')) +

geom_point(aes(colour = 'Label')))

500

501 print("")

502 print("Training complete!")

503 print("")

504 print("Final result is below!")

505 print(final_info)

506

507 elif self.postposition == "Eyse":

508

509 def flat_accuracy(preds, labels):

510 pred_flat = np.argmax(preds, axis=1).flatten()

511 labels_flat = labels.flatten()

512 return np.sum(pred_flat == labels_flat) / len(

labels_flat)

513

514 def SRC_flat_accuracy(preds, labels):

515 pred_flat = np.argmax(preds, axis=1).flatten()

302



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

516 labels_flat = labels.flatten()

517 match_num = 0

518 func_num = 0

519 for i in range(0,len(pred_flat)):

520 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 0):

521 match_num += 1

522 if labels_flat[i] == 0:

523 func_num += 1

524 if match_num == 0 or func_num == 0:

525 return 0

526 else:

527 return match_num / func_num

528

529 def LOC_flat_accuracy(preds, labels):

530 pred_flat = np.argmax(preds, axis=1).flatten()

531 labels_flat = labels.flatten()

532 match_num = 0

533 func_num = 0

534 for i in range(0,len(pred_flat)):

535 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 1):

536 match_num += 1

537 if labels_flat[i] == 1:

538 func_num += 1

539 if match_num == 0 or func_num == 0:

540 return 0

541 else:

542 return match_num / func_num

543

544 model.zero_grad()

303



545 final_info = {}

546

547 for epoch_i in range(0, epochs):

548

549 print("")

550 print('======== Epoch {:} / {:} ========'.

format(epoch_i + 1, epochs))

551 print('Training...')

552

553 t0 = time.time()

554 total_loss = 0

555 model.train()

556

557 for step, batch in enumerate(train_dataloader):

558 if step % 500 == 0 and not step == 0:

559 elapsed = format_time(time.time() - t0)

560 print(' Batch {:>5,} of {:>5,}.

Elapsed: {:}.'.format(step, len(

train_dataloader), elapsed))

561

562 batch = tuple(t.to(device) for t in batch)

563 b_input_ids, b_input_mask, b_labels = batch

564 outputs = model(b_input_ids,

565 token_type_ids=None,

566 attention_mask=b_input_mask

,

567 labels=b_labels)

568

569 loss = outputs[0]

570 total_loss += loss.item()

571 loss.backward()

304



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

572 torch.nn.utils.clip_grad_norm_(model.

parameters(), 1.0)

573 optimizer.step()

574 scheduler.step()

575 model.zero_grad()

576

577 avg_train_loss = total_loss / len(

train_dataloader)

578

579 print("")

580 print(" Average training loss: {0:.2f}".format

(avg_train_loss))

581 print(" Training epcoh took: {:}".format(

format_time(time.time() - t0)))

582

583 print("")

584 print("Running Validation...")

585

586 t0 = time.time()

587 model.eval()

588

589 eval_loss, eval_accuracy = 0, 0

590 nb_eval_steps, nb_eval_examples = 0, 0

591 SRC_nb_eval_steps, SRC_eval_accuracy = 0, 0

592 LOC_nb_eval_steps, LOC_eval_accuracy = 0, 0

593

594 epoch_info = {}

595

596 for batch in test_dataloader:

597 batch = tuple(t.to(device) for t in batch)

598 b_input_ids, b_input_mask, b_labels = batch

305



599 with torch.no_grad():

600 outputs = model(b_input_ids,

601 token_type_ids=None,

602 attention_mask=

b_input_mask)

603

604 logits = outputs[0]

605 logits = logits.detach().cpu().numpy()

606 label_ids = b_labels.to('cpu').numpy()

607

608 tmp_eval_accuracy = flat_accuracy(logits,

label_ids)

609 eval_accuracy += tmp_eval_accuracy

610 nb_eval_steps += 1

611

612 SRC_tmp_eval_accuracy = SRC_flat_accuracy(

logits, label_ids)

613 SRC_eval_accuracy += SRC_tmp_eval_accuracy

614 SRC_nb_eval_steps += 1

615

616 LOC_tmp_eval_accuracy = LOC_flat_accuracy(

logits, label_ids)

617 LOC_eval_accuracy += LOC_tmp_eval_accuracy

618 LOC_nb_eval_steps += 1

619

620 print(" Accuracy: {0:.2f}".format(

eval_accuracy/nb_eval_steps))

621 print(" Validation took: {:}".format(

format_time(time.time() - t0)))

622 print("")

623 print(" Detail accuracy ")

306



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

624 print(" SRC_Accuracy: {0:.2f}".format(

SRC_eval_accuracy/SRC_nb_eval_steps))

625 print(" LOC_Accuracy: {0:.2f}".format(

LOC_eval_accuracy/LOC_nb_eval_steps))

626

627 epoch_info["Total"] = round(eval_accuracy/

nb_eval_steps,3)

628 epoch_info["Loss"] = round(avg_train_loss,3)

629 epoch_info["SRC"] = round(SRC_eval_accuracy/

SRC_nb_eval_steps,3)

630 epoch_info["LOC"] = round(LOC_eval_accuracy/

LOC_nb_eval_steps,3)

631

632 final_info["epoch"+str(epoch_i)] = epoch_info

633

634 model.eval()

635 test_input_ids = []

636 test_input_mask = []

637 test_labels = []

638

639 num = 0

640 for step, batch in enumerate(test_data):

641 batch = tuple(t.to(device) for t in batch)

642

643 b_input_ids, b_input_mask, b_labels = batch

644 input_ids_arr = []

645 input_mask_arr = []

646

647 for i in range(0,len(b_input_ids)):

648 input_ids_arr.append(int(b_input_ids[i]))

649 input_mask_arr.append(int(b_input_mask[i]))

307



650

651 test_input_ids.append(input_ids_arr)

652 test_input_mask.append(input_mask_arr)

653 test_labels.append(int(b_labels))

654

655 test_input_ids = torch.tensor(test_input_ids)

656 test_input_mask = torch.tensor(test_input_mask)

657 test_labels = test_labels

658

659 test_input_ids = test_input_ids.to(device)

660 test_input_mask = test_input_mask.to(device)

661

662 with torch.no_grad():

663 outputs = model(test_input_ids,

664 token_type_ids=None,

665 attention_mask=

test_input_mask)

666

667 sentence_vecs_sum = outputs[0]

668

669 sentence_array = []

670 for i in range(0,len(sentence_vecs_sum)):

671 each_array = []

672 for j in range(0,len(sentence_vecs_sum[i])):

673 each_array.append(float(sentence_vecs_sum[i

][j]))

674 sentence_array.append(each_array)

675

676 initial_df = pd.DataFrame(sentence_array)

677

678 from sklearn.manifold import TSNE

308



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

679 tsne = TSNE(n_components=2, random_state=0)

680 tsne_obj= tsne.fit_transform(initial_df)

681

682 tsne_df = pd.DataFrame({'X':tsne_obj[:,0],'Y':

tsne_obj[:,1],'Label':test_labels})

683

684 import numpy as np

685 import pandas as pd

686 from plotnine import *

687

688 print("")

689 print(" Network visualization ")

690 print(ggplot(tsne_df, aes(x='X', y='Y')) +

geom_point(aes(colour = 'Label')))

691

692 print("")

693 print("Training complete!")

694 print("")

695 print("Final result is below!")

696 print(final_info)

697

698 elif self.postposition == "Lo":

699

700 def flat_accuracy(preds, labels):

701 pred_flat = np.argmax(preds, axis=1).flatten()

702 labels_flat = labels.flatten()

703 return np.sum(pred_flat == labels_flat) / len(

labels_flat)

704

705 def FNS_flat_accuracy(preds, labels):

706 pred_flat = np.argmax(preds, axis=1).flatten()

309



707 labels_flat = labels.flatten()

708 match_num = 0

709 func_num = 0

710 for i in range(0,len(pred_flat)):

711 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 0):

712 match_num += 1

713 if labels_flat[i] == 0:

714 func_num += 1

715 if match_num == 0 or func_num == 0:

716 return 0

717 else:

718 return match_num / func_num

719

720 def INS_flat_accuracy(preds, labels):

721 pred_flat = np.argmax(preds, axis=1).flatten()

722 labels_flat = labels.flatten()

723 match_num = 0

724 func_num = 0

725 for i in range(0,len(pred_flat)):

726 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 1):

727 match_num += 1

728 if labels_flat[i] == 1:

729 func_num += 1

730 if match_num == 0 or func_num == 0:

731 return 0

732 else:

733 return match_num / func_num

734

735 def DIR_flat_accuracy(preds, labels):

310



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

736 pred_flat = np.argmax(preds, axis=1).flatten()

737 labels_flat = labels.flatten()

738 match_num = 0

739 func_num = 0

740 for i in range(0,len(pred_flat)):

741 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 2):

742 match_num += 1

743 if labels_flat[i] == 2:

744 func_num += 1

745 if match_num == 0 or func_num == 0:

746 return 0

747 else:

748 return match_num / func_num

749

750 def EFF_flat_accuracy(preds, labels):

751 pred_flat = np.argmax(preds, axis=1).flatten()

752 labels_flat = labels.flatten()

753 match_num = 0

754 func_num = 0

755 for i in range(0,len(pred_flat)):

756 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 3):

757 match_num += 1

758 if labels_flat[i] == 3:

759 func_num += 1

760 if match_num == 0 or func_num == 0:

761 return 0

762 else:

763 return match_num / func_num

764

311



765 def CRT_flat_accuracy(preds, labels):

766 pred_flat = np.argmax(preds, axis=1).flatten()

767 labels_flat = labels.flatten()

768 match_num = 0

769 func_num = 0

770 for i in range(0,len(pred_flat)):

771 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 4):

772 match_num += 1

773 if labels_flat[i] == 4:

774 func_num += 1

775 if match_num == 0 or func_num == 0:

776 return 0

777 else:

778 return match_num / func_num

779

780 def LOC_flat_accuracy(preds, labels):

781 pred_flat = np.argmax(preds, axis=1).flatten()

782 labels_flat = labels.flatten()

783 match_num = 0

784 func_num = 0

785 for i in range(0,len(pred_flat)):

786 if (pred_flat[i] == labels_flat[i]) and (

labels_flat[i] == 5):

787 match_num += 1

788 if labels_flat[i] == 5:

789 func_num += 1

790 if match_num == 0 or func_num == 0:

791 return 0

792 else:

793 return match_num / func_num

312



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

794

795 model.zero_grad()

796 final_info = {}

797

798 for epoch_i in range(0, epochs):

799

800 print("")

801 print('======== Epoch {:} / {:} ========'.

format(epoch_i + 1, epochs))

802 print('Training...')

803

804 t0 = time.time()

805 total_loss = 0

806 model.train()

807

808 for step, batch in enumerate(train_dataloader):

809 if step % 500 == 0 and not step == 0:

810 elapsed = format_time(time.time() - t0)

811 print(' Batch {:>5,} of {:>5,}.

Elapsed: {:}.'.format(step, len(

train_dataloader), elapsed))

812

813 batch = tuple(t.to(device) for t in batch)

814 b_input_ids, b_input_mask, b_labels = batch

815 outputs = model(b_input_ids,

816 token_type_ids=None,

817 attention_mask=b_input_mask

,

818 labels=b_labels)

819

820 loss = outputs[0]

313



821 total_loss += loss.item()

822 loss.backward()

823 torch.nn.utils.clip_grad_norm_(model.

parameters(), 1.0)

824 optimizer.step()

825 scheduler.step()

826 model.zero_grad()

827

828 avg_train_loss = total_loss / len(

train_dataloader)

829

830 print("")

831 print(" Average training loss: {0:.2f}".format

(avg_train_loss))

832 print(" Training epcoh took: {:}".format(

format_time(time.time() - t0)))

833

834 print("")

835 print("Running Validation...")

836

837 t0 = time.time()

838 model.eval()

839

840 eval_loss, eval_accuracy = 0, 0

841 nb_eval_steps, nb_eval_examples = 0, 0

842 FNS_nb_eval_steps, FNS_eval_accuracy = 0, 0

843 INS_nb_eval_steps, INS_eval_accuracy = 0, 0

844 DIR_nb_eval_steps, DIR_eval_accuracy = 0, 0

845 EFF_nb_eval_steps, EFF_eval_accuracy = 0, 0

846 CRT_nb_eval_steps, CRT_eval_accuracy = 0, 0

847 LOC_nb_eval_steps, LOC_eval_accuracy = 0, 0

314



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

848

849 epoch_info = {}

850

851 for batch in test_dataloader:

852 batch = tuple(t.to(device) for t in batch)

853 b_input_ids, b_input_mask, b_labels = batch

854 with torch.no_grad():

855 outputs = model(b_input_ids,

856 token_type_ids=None,

857 attention_mask=

b_input_mask)

858

859 logits = outputs[0]

860

861 logits = logits.detach().cpu().numpy()

862 label_ids = b_labels.to('cpu').numpy()

863

864 tmp_eval_accuracy = flat_accuracy(logits,

label_ids)

865 eval_accuracy += tmp_eval_accuracy

866 nb_eval_steps += 1

867

868 FNS_tmp_eval_accuracy = FNS_flat_accuracy(

logits, label_ids)

869 FNS_eval_accuracy += FNS_tmp_eval_accuracy

870 FNS_nb_eval_steps += 1

871

872 INS_tmp_eval_accuracy = INS_flat_accuracy(

logits, label_ids)

873 INS_eval_accuracy += INS_tmp_eval_accuracy

874 INS_nb_eval_steps += 1

315



875

876 DIR_tmp_eval_accuracy = DIR_flat_accuracy(

logits, label_ids)

877 DIR_eval_accuracy += DIR_tmp_eval_accuracy

878 DIR_nb_eval_steps += 1

879

880 EFF_tmp_eval_accuracy = EFF_flat_accuracy(

logits, label_ids)

881 EFF_eval_accuracy += EFF_tmp_eval_accuracy

882 EFF_nb_eval_steps += 1

883

884 CRT_tmp_eval_accuracy = CRT_flat_accuracy(

logits, label_ids)

885 CRT_eval_accuracy += CRT_tmp_eval_accuracy

886 CRT_nb_eval_steps += 1

887

888 LOC_tmp_eval_accuracy = LOC_flat_accuracy(

logits, label_ids)

889 LOC_eval_accuracy += LOC_tmp_eval_accuracy

890 LOC_nb_eval_steps += 1

891

892 print(" Accuracy: {0:.2f}".format(

eval_accuracy/nb_eval_steps))

893 print(" Validation took: {:}".format(

format_time(time.time() - t0)))

894 print("")

895 print(" Detail accuracy ")

896 print(" FNS_Accuracy: {0:.2f}".format(

FNS_eval_accuracy/FNS_nb_eval_steps))

897 print(" INS_Accuracy: {0:.2f}".format(

INS_eval_accuracy/INS_nb_eval_steps))

316



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

898 print(" DIR_Accuracy: {0:.2f}".format(

DIR_eval_accuracy/DIR_nb_eval_steps))

899 print(" EFF_Accuracy: {0:.2f}".format(

EFF_eval_accuracy/EFF_nb_eval_steps))

900 print(" CRT_Accuracy: {0:.2f}".format(

CRT_eval_accuracy/CRT_nb_eval_steps))

901 print(" LOC_Accuracy: {0:.2f}".format(

LOC_eval_accuracy/LOC_nb_eval_steps))

902

903 epoch_info["Total"] = round(eval_accuracy/

nb_eval_steps,3)

904 epoch_info["Loss"] = round(avg_train_loss,3)

905 epoch_info["FNS"] = round(FNS_eval_accuracy/

FNS_nb_eval_steps,3)

906 epoch_info["INS"] = round(INS_eval_accuracy/

INS_nb_eval_steps,3)

907 epoch_info["DIR"] = round(DIR_eval_accuracy/

DIR_nb_eval_steps,3)

908 epoch_info["EFF"] = round(EFF_eval_accuracy/

EFF_nb_eval_steps,3)

909 epoch_info["CRT"] = round(CRT_eval_accuracy/

CRT_nb_eval_steps,3)

910 epoch_info["LOC"] = round(LOC_eval_accuracy/

LOC_nb_eval_steps,3)

911

912 final_info["epoch"+str(epoch_i)] = epoch_info

913

914 model.eval()

915 test_input_ids = []

916 test_input_mask = []

917 test_labels = []

317



918

919 num = 0

920 for step, batch in enumerate(test_data):

921 batch = tuple(t.to(device) for t in batch)

922 b_input_ids, b_input_mask, b_labels = batch

923 input_ids_arr = []

924 input_mask_arr = []

925

926 for i in range(0,len(b_input_ids)):

927 input_ids_arr.append(int(b_input_ids[i]))

928 input_mask_arr.append(int(b_input_mask[i]))

929

930 test_input_ids.append(input_ids_arr)

931 test_input_mask.append(input_mask_arr)

932 test_labels.append(int(b_labels))

933

934 test_input_ids = torch.tensor(test_input_ids)

935 test_input_mask = torch.tensor(test_input_mask)

936 test_labels = test_labels

937 test_input_ids = test_input_ids.to(device)

938 test_input_mask = test_input_mask.to(device)

939

940 with torch.no_grad():

941 outputs = model(test_input_ids,

942 token_type_ids=None,

943 attention_mask=

test_input_mask)

944

945 sentence_vecs_sum = outputs[0]

946

947 sentence_array = []

318



APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL

948 for i in range(0,len(sentence_vecs_sum)):

949 each_array = []

950 for j in range(0,len(sentence_vecs_sum[i])):

951 each_array.append(float(sentence_vecs_sum[i

][j]))

952 sentence_array.append(each_array)

953 initial_df = pd.DataFrame(sentence_array)

954 from sklearn.manifold import TSNE

955 tsne = TSNE(n_components=2, random_state=0)

956 tsne_obj= tsne.fit_transform(initial_df)

957 tsne_df = pd.DataFrame({'X':tsne_obj[:,0],'Y':

tsne_obj[:,1],'Label':test_labels})

958

959 import numpy as np

960 import pandas as pd

961 from plotnine import *

962 print("")

963 print(" Network visualization ")

964 print(ggplot(tsne_df, aes(x='X', y='Y')) +

geom_point(aes(colour = 'Label')))

965

966 print("")

967 print("Training complete!")

968 print("")

969 print("Final result is below!")

970 print(final_info)

971

972 model.save_pretrained('drive/My Drive/BERT/SM/KoBERT/

Postposition/Model/')

973 tokenizer.save_pretrained('drive/My Drive/BERT/SM/

KoBERT/Postposition/Model/')

319



320



Appendix D
Code for the first visualization system

(i.e., PostEmbedding)

The following script is the code that I used to develop the first visualization

system (i.e., PostEmbedding).

Listing D.1: JavaScript code for developing PostEmbedding

1

2 <!DOCTYPE html>

3 <html>

4 <head>

5 <title>PostEmbedding</title><!--<link rel="stylesheet"

href="./stylesheets/bubble_style.css">-->

6 <meta http-equiv="Content-Type" content="text/html;

charset=utf-8">

7 <script src="./javascripts/d3.v3.min.js" charset="utf-8">

</script>

8 <script src="./javascripts/d3.v4.js" charset="utf-8">

</script>

9 <script src="./javascripts/jquery-1.12.0.min.js" charset="

utf-8"></script>

321

https://seongmin-mun.github.io/VisualSystem/Major/PostEmbedding/index.html


10 <link rel="stylesheet" href="https://

maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/

bootstrap.min.css">

11 <script src="https://maxcdn.bootstrapcdn.com/bootstrap

/3.3.7/js/bootstrap.min.js"></script>

12 <!--<link rel="stylesheet" href="./stylesheets/PostVis.css

">-->

13

14 <script src="./Data/concordancedata.js" charset="utf-8">

</script>

15 <script src="./Data/DSMsdata.js" charset="utf-8"></script>

16 <script src="./Data/Networkdata.js" charset="utf-8">

</script>

17

18 <style>

19 body {

20 margin: 0;

21 }

22

23 #header{

24 position:relative;

25 width:100%;

26 height:50px;

27 background-color:#00cec9;

28 background-clip: content-box;

29 }

30

31 #left {

32 position:relative;

33 float:left;

34 overflow:hidden;

322



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

35 width:14%;

36 height:920px;

37 padding: 0.5%;

38 background-color:whitesmoke;

39 background-clip: content-box;

40 }

41

42 #left_top {

43 position:relative;

44 float:left;

45 overflow:hidden;

46 width:100%;

47 height:475px;

48 padding: 0.5%;

49 background-clip: content-box;

50 }

51

52 #left_bottom {

53 position:relative;

54 float:left;

55 overflow:hidden;

56 width:100%;

57 height:435px;

58 padding: 0.5%;

59 background-clip: content-box;

60 }

61

62

63 #section {

64 position:relative;

65 float:left;

323



66 overflow:hidden;

67 width:67%;

68 height:920px;

69 padding: 0.5%;

70 background-clip: content-box;

71 }

72

73 #section_top {

74 position:relative;

75 float:left;

76 overflow:hidden;

77 width:100%;

78 height:620px;

79 padding-right: : 0.5%;

80 padding-top: 0.5%;

81 padding-left: 0.5%;

82 background-clip: content-box;

83 }

84

85 #section_bottom {

86 position:relative;

87 float:left;

88 overflow:hidden;

89 width:100%;

90 height:295px;

91 padding-right: : 0.5%;

92 padding-bottom: 0.5%;

93 padding-left: 0.5%;

94 background-clip: content-box;

95 }

96

324



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

97 #right {

98 position:relative;

99 float:right;

100 overflow:hidden;

101 width:19%;

102 height:920px;

103 padding: 0.5%;

104 background-color:whitesmoke;

105 background-clip: content-box;

106 }

107

108 #right_top {

109 position:relative;

110 float:left;

111 overflow:hidden;

112 width:100%;

113 height:405px;

114 padding: 0.5%;

115 background-clip: content-box;

116 }

117

118

119 #right_bottom {

120 position:relative;

121 float:left;

122 overflow:hidden;

123 width:100%;

124 height:505px;

125 padding: 0.5%;

126 background-clip: content-box;

127 }

325



128

129 p#left_option {

130 text-align: left;

131 font-family: Open Sans;

132 font-size: 1.5em;

133 color: #666666;

134 font-weight: bold;

135 padding-top: 4%;

136 padding-bottom: 4%;

137 padding-left: 5%;

138 margin: 0;

139 }

140

141 p#right_option {

142 text-align: left;

143 font-family: Open Sans;

144 font-size: 1.6em;

145 color: #666666;

146 font-weight: bold;

147 padding-top: 4%;

148 padding-bottom: 4%;

149 padding-left: 5%;

150 margin: 0;

151 }

152

153 p#section_top_p {

154 font-family: Open Sans;

155 font-size: 1.5em;

156 color: #666666;

157 font-weight: bold;

158 padding-left: 1%;

326



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

159 margin: 0;

160 }

161

162 p#section_bottom_p {

163 font-family: Open Sans;

164 font-size: 1.5em;

165 color: #666666;

166 font-weight: bold;

167 padding-left: 1%;

168 margin: 0;

169 }

170

171

172 p#header_p_left {

173 position: relative;

174 text-align: left;

175 font-family: Open Sans;

176 font-size: 2em;

177 color: white;

178 font-weight: bold;

179 padding-top: 0.5%;

180 padding-bottom: 0.5%;

181 padding-left: 1%;

182 margin: 0;

183 }

184

185 p#header_p_right {

186 position: relative;

187 text-align: right;

188 font-family: Open Sans;

189 font-size: 2em;

327



190 color: white;

191 font-weight: bold;

192 padding-top: 0.5%;

193 padding-bottom: 0.5%;

194 padding-right: 2%;

195 margin: 0;

196 }

197

198 p#footer_p{

199 font-size: 1em;

200 }

201

202 a#header_a{

203 font-family: Open Sans;

204 color: white;

205 font-weight: bold;

206 cursor: pointer;

207 }

208

209 a#footer_a{

210 font-family: Open Sans;

211 color: #f3c623;

212 font-weight: bold;

213 cursor: pointer;

214 }

215

216 #header_left{

217 float:left;

218 width:49%;

219 height:50px;

220 padding-top: 0.1%;

328



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

221 background-clip: content-box;

222 }

223

224 #header_right{

225 float:right;

226 width:49%;

227 height:50px;

228 padding-top: 0.1%;

229 background-clip: content-box;

230 }

231

232 #footer {

233 height:20px;

234 text-align: center;

235 color: white;

236 background-color:#717171;

237 clear:both;

238 }

239

240 select#op_postposition { /*text-align-last:center;*/

241 width: 90%;

242 height: 30px;

243 font-size: 17px;

244 border-radius: 3px;

245 position: relative;

246 left:5%;

247 background: white;

248 cursor: pointer;

249 }

250

251 select#op_function { /*text-align-last:center;*/

329



252 width: 90%;

253 height: 30px;

254 font-size: 17px;

255 border-radius: 3px;

256 position: relative;

257 left:5%;

258 background: white;

259 cursor: pointer;

260 }

261

262 select#op_method { /*text-align-last:center;*/

263 width: 90%;

264 height: 30px;

265 font-size: 17px;

266 border-radius: 3px;

267 position: relative;

268 left:5%;

269 background: white;

270 cursor: pointer;

271 }

272

273 select#op_window {

274 width: 90%;

275 height: 30px;

276 font-size: 17px;

277 border-radius: 3px;

278 position: relative;

279 left:5%;

280 background: white;

281 cursor: pointer;

282 }

330



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

283

284 input#onoff {

285 cursor: pointer;

286 position: relative;

287 font-size: 14px;

288 left:8%;

289 }

290

291

292 select#op_node_size {

293 width: 90%;

294 height: 30px;

295 font-size: 17px;

296 border-radius: 3px;

297 position: relative;

298 left:5%;

299 background: white;

300 cursor: pointer;

301 }

302

303 select#op_node_color {

304 width: 90%;

305 height: 30px;

306 font-size: 17px;

307 border-radius: 3px;

308 position: relative;

309 left:5%;

310 background: white;

311 cursor: pointer;

312 }

313

331



314

315 #container_leftbottom {

316 border:2px solid #ccc;

317 width:88%;

318 height: 360px;

319 position: absolute;

320 left: 5%;

321 overflow-y: scroll;

322 overflow-x: auto;

323 white-space: nowrap;

324 border-radius: 10px;

325 background: white;

326 }

327

328 #container_rightbottom {

329 border:2px solid #ccc;

330 width:92.5%;

331 height: 430px;

332 position: absolute;

333 left: 5%;

334 overflow-y: scroll;

335 overflow-x: auto;

336 white-space: nowrap;

337 border-radius: 10px;

338 background: white;

339 }

340

341 #container_section_bottom {

342 border:2px solid #ccc;

343 width:98%;

344 height: 245px;

332



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

345 position: absolute;

346 left: 1%;

347 overflow-y: scroll;

348 overflow-x: auto;

349 white-space: nowrap;

350 border-radius: 8px;

351 background: white;

352 }

353

354 .CB_leftbottom{

355 cursor: pointer;

356 position: relative;

357 font-size: 14px;

358 left:5%;

359 }

360

361 .networklinks line {

362 stroke: #999;

363 stroke-opacity: 0.6;

364 }

365

366 .networknodes circle {

367 stroke: #666666;

368 stroke-width: 1.5px;

369 }

370

371 table {

372 font-size: 15px;

373 max-height: 200px;

374 overflow: auto;

375 background: #ddd;

333



376 box-shadow: 0 0 1px 1px #ddd;

377 }

378

379 th, td {

380 background: #fff;

381 padding: 8px 16px;

382 padding-bottom: 0px;

383 }

384

385 thead th {

386 background-color: #ddd;

387 position: sticky;

388 top: 0;

389 }

390

391 div.tooltip {

392 position: absolute;

393 text-align: left;

394 padding: 5px;

395 font-size: 17px;

396 background-color: #efefef;

397 border: solid 1px #cecece;

398 border-radius: 8px;

399 box-shadow: 0 3px 5px 0 #dfdfdf;

400 pointer-events: none;

401 }

402

403 h5 {

404 font-size: 15px;

405 }

406

334



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

407 g.networknodes text {

408 font-size: 13px;

409 }

410

411 text#nodegroup.nodetext {

412 font-size: 13px;

413 }

414

415 @media all and (min-width:951px) and (max-height: 1000px)

{ /*0.95*/

416 #header{

417 height:47.55px;

418 }

419 #header_left{

420 height:47.55px;

421 }

422

423 #header_right{

424 height:47.55px;

425 }

426 #left {

427 height:874.00px;

428 }

429 #left_top {

430 height:460.75px;

431 }

432 #left_bottom {

433 height:403.75px;

434 }

435 p#left_option {

436 font-size: 1.42em;

335



437 }

438 p#right_option {

439 font-size: 1.52em;

440 }

441 p#section_top_p {

442 font-size: 1.42em;

443 }

444 p#section_bottom_p {

445 font-size: 1.42em;

446 }

447 p#header_p {

448 font-size: 1.90em;

449 }

450 p#header_p_left {

451 font-size: 1.9em;

452 }

453

454 p#header_p_right {

455 font-size: 1.9em;

456 }

457

458 p#footer_p{

459 font-size: 0.95em;

460 }

461 #section {

462 height:874.92px;

463 }

464 #section_top {

465 height:589.62px;

466 }

467 #section_bottom {

336



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

468 height:280.25px;

469 }

470 #right {

471 height:874.92px;

472 }

473 #right_top {

474 height:380.75px;

475 }

476 #right_bottom {

477 height:465.75px;

478 }

479 #footer {

480 height:19px;

481 }

482 select#op_postposition {

483 height: 28.53px;

484 font-size: 16.16px;

485 }

486 select#op_function {

487 height: 28.53px;

488 font-size: 16.16px;

489 }

490 select#op_method {

491 height: 28.53px;

492 font-size: 16.16px;

493 }

494 select#op_window {

495 height: 28.53px;

496 font-size: 16.16px;

497 }

498 select#op_node_size {

337



499 height: 28.53px;

500 font-size: 16.16px;

501 }

502 select#op_node_color {

503 height: 28.53px;

504 font-size: 16.16px;

505 }

506 input#onoff {

507 font-size: 13.30px;

508 }

509 #container_leftbottom {

510 height: 342px;

511 }

512 #container_rightbottom {

513 height: 420px;

514 }

515 #container_section_bottom {

516 height: 232.75px;

517 }

518 div.tooltip {

519 padding: 4.75px;

520 font-size: 16.16px;

521 border-radius: 7.60px;

522 }

523 .CB_leftbottom{

524 font-size: 14.26px;

525 }

526 table {

527 font-size: 14.26px;

528 }

529 img#header_img{

338



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

530 width: 33.28px;

531 height: 30.43px;

532 }

533 h5 {

534 font-size: 14.26px;

535 }

536 g.networknodes text {

537 font-size: 12.35px;

538 }

539 text#nodegroup.nodetext {

540 font-size: 12.35px;

541 }

542 }

543 @media all and (min-width:901px) and (max-height: 950px) {

/*0.948*/

544 #header{

545 height:45.05px;

546 }

547 #header_left{

548 height:45.05px;

549 }

550

551 #header_right{

552 height:45.05px;

553 }

554 #left {

555 height:828.55px;

556 }

557 #left_top {

558 height:432.52px;

559 }

339



560 #left_bottom {

561 height:387.02px;

562 }

563 p#left_option {

564 font-size: 1.35em;

565 }

566 p#right_option {

567 font-size: 1.44em;

568 }

569 p#section_top_p {

570 font-size: 1.35em;

571 }

572 p#section_bottom_p {

573 font-size: 1.35em;

574 }

575 p#header_p {

576 font-size: 1.80em;

577 }

578 p#header_p_left {

579 font-size: 1.80em;

580 }

581

582 p#header_p_right {

583 font-size: 1.80em;

584 }

585 p#footer_p{

586 font-size: 0.9em;

587 }

588 #section {

589 height:828.92px;

590 }

340



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

591 #section_top {

592 height:558.62px;

593 }

594 #section_bottom {

595 height:265.677px;

596 }

597 #right {

598 height:828.92px;

599 }

600 #right_top {

601 height:367.113px;

602 }

603 #right_bottom {

604 height:432.433px;

605 }

606 #footer {

607 height:18px;

608 }

609 select#op_postposition {

610 height: 27.03px;

611 font-size: 15.31px;

612 }

613 select#op_function {

614 height: 27.03px;

615 font-size: 15.31px;

616 }

617 select#op_method {

618 height: 27.03px;

619 font-size: 15.31px;

620 }

621 select#op_window {

341



622 height: 27.03px;

623 font-size: 15.31px;

624 }

625 select#op_node_size {

626 height: 27.03px;

627 font-size: 15.31px;

628 }

629 select#op_node_color {

630 height: 27.03px;

631 font-size: 15.31px;

632 }

633 input#onoff {

634 font-size: 12.6px;

635 }

636

637 #container_leftbottom {

638 height: 328.482px;

639 }

640 #container_rightbottom {

641 height: 399.288px;

642 }

643 #container_section_bottom {

644 height: 220.647px;

645 }

646 div.tooltip {

647 padding: 4.50px;

648 font-size: 15.31px;

649 border-radius: 7.21px;

650 }

651 .CB_leftbottom{

652 font-size: 13.51px;

342



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

653 }

654 table {

655 font-size: 13.51px;

656 }

657 img#header_img{

658 width: 31.53px;

659 height: 28.83px;

660 }

661 h5 {

662 font-size: 13.51px;

663 }

664 g.networknodes text {

665 font-size: 11.71px;

666 }

667 text#nodegroup.nodetext {

668 font-size: 11.71px;

669 }

670 }

671

672 @media all and (min-width:819px) and (max-height: 900px) {

/*0.909*/

673 #header{

674 height:40.95px;

675 }

676 #header_left{

677 height:40.95px;

678 }

679

680 #header_right{

681 height:40.95px;

682 }

343



683 #left {

684 height:753.15px;

685 }

686 #left_top {

687 height:388.9px;

688 }

689 #left_bottom {

690 height:356.05px;

691 }

692 p#left_option {

693 font-size: 1.22em;

694 }

695 p#right_option {

696 font-size: 1.31em;

697 }

698 p#section_top_p {

699 font-size: 1.22em;

700 }

701 p#section_bottom_p {

702 font-size: 1.22715em;

703 }

704 p#header_p {

705 font-size: 1.63em;

706 }

707 p#header_p_left {

708 font-size: 1.63em;

709 }

710

711 p#header_p_right {

712 font-size: 1.63em;

713 }

344



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

714 p#footer_p{

715 font-size: 0.8em;

716 }

717 #section {

718 height:753.56px;

719 }

720 #section_top {

721 height:507.83px;

722 }

723 #section_bottom {

724 height:241.5004px;

725 }

726 #right {

727 height:753.56px;

728 }

729 #right_top {

730 height:336.0691px;

731 }

732 #right_bottom {

733 height:390.8982px;

734 }

735 #footer {

736 height:16.4px;

737 }

738 select#op_postposition {

739 height: 24.57px;

740 font-size: 13.92px;

741 }

742 select#op_function {

743 height: 24.57px;

744 font-size: 13.92px;

345



745 }

746 select#op_method {

747 height: 24.57px;

748 font-size: 13.92px;

749 }

750 select#op_window {

751 height: 24.57px;

752 font-size: 13.92px;

753 }

754 select#op_node_size {

755 height: 24.57px;

756 font-size: 13.92px;

757 }

758 select#op_node_color {

759 height: 24.57px;

760 font-size: 13.92px;

761 }

762 input#onoff {

763 font-size: 11.45px;

764 }

765

766 #container_leftbottom {

767 height: 302.84px;

768 }

769 #container_rightbottom {

770 height: 357.9498px;

771 }

772 #container_section_bottom {

773 height: 200.5681px;

774 }

775 div.tooltip {

346



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

776 padding: 4.09px;

777 font-size: 13.92px;

778 border-radius: 6.55px;

779 }

780 .CB_leftmiddle{

781 font-size: 12.28px;

782 }

783 .CB_leftbottom{

784 font-size: 12.28px;

785 }

786 table {

787 font-size: 12.28px;

788 }

789 img#header_img{

790 width: 28.66px;

791 height: 26.21px;

792 }

793 h5 {

794 font-size: 12.28px;

795 }

796 g.networknodes text {

797 font-size: 10.64px;

798 }

799 text#nodegroup.nodetext {

800 font-size: 10.64px;

801 }

802 }

803

804 @media all and (min-width:701px) and (max-height: 818px) {

/*0.856*/

805 #header{

347



806 height:35.05px;

807 }

808 #header_left{

809 height:35.05px;

810 }

811

812 #header_right{

813 height:35.05px;

814 }

815 #left {

816 height:644.69px;

817 }

818 #left_top {

819 height:325.89px;

820 }

821 #left_bottom {

822 height:311.79px;

823 }

824 p#left_option {

825 font-size: 1.05em;

826 }

827 p#right_option {

828 font-size: 1.12em;

829 }

830 p#section_top_p {

831 font-size: 1.05em;

832 }

833 p#section_bottom_p {

834 font-size: 1.05em;

835 }

836 p#header_p {

348



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

837 font-size: 1.40em;

838 }

839 p#header_p_left {

840 font-size: 1.40em;

841 }

842

843 p#header_p_right {

844 font-size: 1.40em;

845 }

846 p#footer_p{

847 font-size: 0.7em;

848 }

849 #section {

850 height:644.92px;

851 }

852 #section_top {

853 height:434.62px;

854 }

855 #section_bottom {

856 height:206.72px;

857 }

858 #right {

859 height:644.92px;

860 }

861 #right_top {

862 height:291.56px;

863 }

864 #right_bottom {

865 height:331.12px;

866 }

867 #footer {

349



868 height:14px;

869 }

870 select#op_postposition {

871 height: 21.03px;

872 font-size: 11.91px;

873 }

874 select#op_function {

875 height: 21.03px;

876 font-size: 11.91px;

877 }

878 select#op_method {

879 height: 21.03px;

880 font-size: 11.91px;

881 }

882 select#op_window {

883 height: 21.03px;

884 font-size: 11.91px;

885 }

886 select#op_node_size {

887 height: 21.03px;

888 font-size: 11.91px;

889 }

890 select#op_node_color {

891 height: 21.03px;

892 font-size: 11.91px;

893 }

894 input#onoff {

895 font-size: 9.8px;

896 }

897

898 #container_leftbottom {

350



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

899 height: 266.24px;

900 }

901 #container_rightbottom {

902 height: 301.37px;

903 }

904 #container_section_bottom {

905 height: 171.69px;

906 }

907 div.tooltip {

908 padding: 3.50px;

909 font-size: 11.91px;

910 border-radius: 5.60px;

911 }

912 .CB_leftmiddle{

913 font-size: 10.51px;

914 }

915 .CB_leftbottom{

916 font-size: 10.51px;

917 }

918 table {

919 font-size: 10.51px;

920 }

921 img#header_img{

922 width: 24.53px;

923 height: 22.43px;

924 }

925 h5 {

926 font-size: 10.51px;

927 }

928 g.networknodes text {

929 font-size: 9.11px;

351



930 }

931 text#nodegroup.nodetext {

932 font-size: 9.11px;

933 }

934 }

935

936 @media all and (min-width:450px) and (max-height: 700px) {

/*0.642*/

937 #header{

938 height:22.5px;

939 }

940 #header_left{

941 height:22.5px;

942 }

943

944 #header_right{

945 height:22.5px;

946 }

947 #left {

948 height:413.89px;

949 }

950 #left_top {

951 height:200.9px;

952 }

953 #left_bottom {

954 height:208.49px;

955 }

956 p#left_option {

957 font-size: 0.675em;

958 }

959 p#right_option {

352



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

960 font-size: 0.72em;

961 }

962 p#section_top_p {

963 font-size: 0.675em;

964 }

965 p#section_bottom_p {

966 font-size: 0.6741em;

967 }

968 p#header_p {

969 font-size: 0.9em;

970 }

971 p#header_p_left {

972 font-size: 0.9em;

973 }

974

975 p#header_p_right {

976 font-size: 0.9em;

977 }

978 p#footer_p{

979 font-size: 0.3em;

980 }

981 #section {

982 height:414px;

983 }

984 #section_top {

985 height:279px;

986 }

987 #section_bottom {

988 height:132.7142px;

989 }

990 #right {

353



991 height:414px;

992 }

993 #right_top {

994 height:191.8039px;

995 }

996 #right_bottom {

997 height:208.5866px;

998 }

999 #footer {

1000 height:9px;

1001 }

1002 select#op_postposition {

1003 height: 13.5px;

1004 font-size: 7.65px;

1005 }

1006 select#op_function {

1007 height: 13.5px;

1008 font-size: 7.65px;

1009 }

1010 select#op_method {

1011 height: 13.5px;

1012 font-size: 7.65px;

1013 }

1014 select#op_window {

1015 height: 13.5px;

1016 font-size: 7.65px;

1017 }

1018 select#op_node_size {

1019 height: 13.5px;

1020 font-size: 7.65px;

1021 }

354



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1022 select#op_node_color {

1023 height: 13.5px;

1024 font-size: 7.65px;

1025 }

1026 input#onoff {

1027 font-size: 6.29px;

1028 }

1029

1030 #container_leftbottom {

1031 height: 179.24px;

1032 }

1033 #container_rightbottom {

1034 height: 194.9495px;

1035 }

1036 #container_section_bottom {

1037 height: 110.225px;

1038 }

1039 div.tooltip {

1040 padding: 2.25px;

1041 font-size: 7.65px;

1042 border-radius: 3.6px;

1043 }

1044 .CB_leftmiddle{

1045 font-size: 6.75px;

1046 }

1047 .CB_leftbottom{

1048 font-size: 6.75px;

1049 }

1050 table {

1051 font-size: 6.75px;

1052 }

355



1053 img#header_img{

1054 width: 15.75px;

1055 height: 14.4px;

1056 }

1057 h5 {

1058 font-size: 6.75px;

1059 }

1060 g.networknodes text {

1061 font-size: 5.85px;

1062 }

1063 text#nodegroup.nodetext {

1064 font-size: 5.85px;

1065 }

1066 }

1067 </style>

1068

1069 </head>

1070 <body>

1071 <div id="header">

1072 <div id="header_left">

1073 <p id="header_p_left" align="left">

PostEmbedding</p>

1074 </div>

1075 <div id="header_right" align="right">

1076 <p id="header_p_right"><a id="header_a" href="

https://github.com/seongmin-mun/

VisualSystem/tree/master/Major/

PostEmbedding">GitHub</a></p>

1077 </div>

1078 </div>

1079 <div id="left">

356



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1080 <div id="left_top">

1081 <p id="left_option">Postposition</p>

1082 <select id="op_postposition">

1083 <option value="ey" selected="selected">

-ey</option>

1084 <option value="eyse">-eyse</option>

1085 <option value="(u)lo">-(u)lo</option>

1086 </select>

1087 <p id="left_option">Method</p>

1088 <select id="op_method">

1089 <option value="ppmi_svd" selected="

selected">PPMI & SVD</option>

1090 <option value="sgns">SGNS</option>

1091 </select>

1092 <p id="left_option">Context window size</p>

1093 <select id="op_window">

1094 <option value="window1" selected="selected

">window 1</option>

1095 <option value="window2">window 2</option>

1096 <option value="window3">window 3</option>

1097 <option value="window4">window 4</option>

1098 <option value="window5">window 5</option>

1099 <option value="window6">window 6</option>

1100 <option value="window7">window 7</option>

1101 <option value="window8">window 8</option>

1102 <option value="window9">window 9</option>

1103 <option value="window10">window 10</option

>

1104 </select>

1105 <p id="left_option">Node size</p>

1106 <select id="op_node_size">

357



1107 <option id="frequency_size" value="

frequency" selected="selected">

frequency</option>

1108 <option id="nomal_size" value="nomal">

default</option>

1109 </select>

1110 <p id="left_option">Node color</p>

1111 <select id="op_node_color">

1112 <option id="class_color" value="pos"

selected="selected">POS</option>

1113 <option id="nomal_color" value="nomal">

default</option>

1114 </select>

1115 <p id="left_option">Text switch</p>

1116 <input class='CB_lefttop' type='checkbox'

value='onoff' id='onoff' checked="checked"/

><label class='CB_lefttop' style="

padding-left: 13%;">On/Off</label>

1117 </div>

1118 <div id="left_bottom">

1119 <p id="left_option">Select POS</p>

1120 <div id="container_leftbottom">

1121

1122 </div>

1123 </div>

1124 </div>

1125 <div id="section">

1126 <div id="section_top">

1127 <p id="section_top_p">Distributional semantic

map with t-SNE</p>

1128 </div>

358



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1129 <div id="section_bottom">

1130 <p id="section_bottom_p">Concordance table</p>

1131 <div id="container_section_bottom">

1132 <table class="table" style="margin-bottom:

0px;">

1133 <thead>

1134 <tr>

1135 <th>id</th>

1136 <th>name</th>

1137 <th>function</th>

1138 <th>sentences</th>

1139 <th>lexeme with POS</th>

1140 </tr>

1141 </thead>

1142 <tbody id="concordancetable">

1143 </tbody>

1144 </table>

1145 </div>

1146 </div>

1147 </div>

1148 <div id="right">

1149

1150 <div id="right_top">

1151 <p id="right_option">Function</p>

1152 <select id="op_function">

1153

1154 </select>

1155 <p id="right_option">Force directed graph</p>

1156 </div>

1157 <div id="right_bottom">

1158 <p id="right_option">Nearest words</p>

359



1159 <div id="container_rightbottom">

1160 <table class="table" style="margin-bottom:

0px;">

1161 <thead>

1162 <tr>

1163 <th>id</th>

1164 <th>name</th>

1165 <th>similarity</th>

1166 <th>frequency</th>

1167 </tr>

1168 </thead>

1169 <tbody id="similaritytable">

1170 </tbody>

1171 </table>

1172 </div>

1173 </div>

1174 </div>

1175 <div id="footer">

1176 <p id="footer_p">2020 - 2021, <a id="footer_a"

href="https://seongmin-mun.github.io/MyWebsite/

Seongmin/index.html">Seongmin Mun</a>. All

rights reserved.<p>

1177 </div>

1178 <script>

1179 $(document).ready(function () {

1180

1181 var functionslist_ey = ['LOC','GOL','EFF','CRT','THM','INS','

AGT','FNS'];

1182 var functionsname_ey = ['Location','Goal','Effector','

Criterion','Theme','Instrument','Agent','Final State'];]

1183

360



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1184 var functionslist_eyse = ['SRC','LOC'];

1185 var functionsname_eyse = ['Source','Location'];

1186 //var functionslist_eyse_number_frame = [487,197];

1187

1188 var functionslist_lo = ['LOC','DIR','EFF','CRT','INS','FNS'];

1189 var functionsname_lo = ['Location','Direction','Effector','

Criterion','Instrument','Final State'];

1190

1191 function draw_op_function_after(post,list,name,name_kr){

1192 //var idname_0 = post[0]+"_"+list[0];

1193 var idname_0 = list[0];

1194 $('#op_function').empty();

1195 $("#op_function").append("<option id='"+idname_0+"' value='"+

idname_0.toLowerCase()+"' selected='selected'>"+list[0]+" (

"+name_kr[0]+", "+name[0]+")"+"</option>")

1196 for (var i = 1; i < list.length ; i++) {

1197 //var idname_i = post[i]+"_"+list[i];

1198 var idname_i = list[i];

1199 $("#op_function").append("<option id='"+idname_i+"' value='"+

idname_i.toLowerCase()+"'>"+list[i]+" ("+name_kr[i]+", "+

name[i]+")"+"</option>");

1200 }

1201 }

1202

1203 function op_function_change(){

1204 var selected_postposition = $( "#op_postposition" ).val();

1205 if (selected_postposition === "ey"){

1206 draw_op_function_after("ey",functionslist_ey,functionsname_ey,

functionsname_kr_ey)

1207 } else if (selected_postposition === "eyse"){

361



1208 draw_op_function_after("eyse",functionslist_eyse,

functionsname_eyse,functionsname_kr_eyse)

1209 } else if (selected_postposition === "(u)lo"){

1210 draw_op_function_after("(u)lo",functionslist_lo,

functionsname_lo,functionsname_kr_lo)

1211 }

1212 drawall();

1213 }

1214

1215 var typeslist = ['NNG','NNP','NNB','NP','NR','VV','VA','MAG','

MAJ','JKB'];

1216 var typesname = ['Common Noun','Proper Noun','Bound Noun','

Pronoun','Numeral','Verb','Adjective','General Adverb','

Conjunctive Adverb','Adverbial Case Marker'];

1217 var POS_name = ['NNG','NNP','NNB','NP','NR','VV','VA','MAG','

MAJ','JKB'];

1218 var POS_color = ['#4f4cb4','#003783','#6685c7','#7faded','#16

a1c6','#ab1432','#6c039d','#1d5041','#4c9046','#5b2e90'];

1219

1220 for(var i = 0 ; i < typeslist.length; i++){

1221 var color = ""

1222 var currentPOS = typeslist[i]

1223 if (currentPOS == POS_name[0]) {

1224 color = POS_color[0]

1225 } else if (currentPOS == POS_name[1]) {

1226 color = POS_color[1]

1227 } else if (currentPOS == POS_name[2]) {

1228 color = POS_color[2]

1229 } else if (currentPOS == POS_name[3]) {

1230 color = POS_color[3]

1231 } else if (currentPOS == POS_name[4]) {

362



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1232 color = POS_color[4]

1233 } else if (currentPOS == POS_name[5]) {

1234 color = POS_color[5]

1235 } else if (currentPOS == POS_name[6]) {

1236 color = POS_color[6]

1237 } else if (currentPOS == POS_name[7]) {

1238 color = POS_color[7]

1239 } else if (currentPOS == POS_name[8]) {

1240 color = POS_color[8]

1241 } else if (currentPOS == POS_name[9]) {

1242 color = POS_color[9]

1243 }

1244 $("#container_leftbottom").append("<input class='CB_leftbottom

' type='checkbox' value='"+typeslist[i]+"' id='

CB_leftbottom_"+i+"' /> <label class='CB_leftbottom'><svg

width='12' height='12'><rect width='11' height='11' rx='2'

class='legendrect' style='fill:"+color+";opacity:0.9;'/>

</svg> "+typeslist[i]+" ("+typesname_kr[i]+", "+typesname[i

]+")</label></br>");

1245 }

1246

1247 function drawconcordance_table(data,post){

1248 $('#concordancetable').empty();

1249 var sentencedata = [];

1250 if(post=="(u)lo"){

1251 post = "lo";

1252 }

1253 for (var i = 0; i < data.length ; i++) {

1254 if ((data[i].postposition === post)) {

1255 sentencedata.push(data[i]);

1256 }

363



1257 }

1258 for(var i = 0 ; i < sentencedata.length; i++){

1259 for(var j = 0 ; j < sentencedata[i].sentences.length; j++){

1260 $("#concordancetable").append("<tr style='padding: 0px;'><td>"

+((i*40)+(j+1))+"</td><td>"+sentencedata[i].sentences[j].

name+"</td><td>"+sentencedata[i].function.toUpperCase()+"</

td><td>"+sentencedata[i].sentences[j].sentence+"</td><td>"+

sentencedata[i].sentences[j].pos_sentence+"</td></tr>");

1261 }

1262 }

1263 }

1264

1265 function checkbox() {

1266

1267 var data_checkbox = []

1268 for(var i = 0; i < typeslist.length; i++){

1269 if(checkedeachValue('CB_leftbottom_'+i)!=='null'){

1270 data_checkbox.push(checkedeachValue('CB_leftbottom_'+i));

1271 }

1272 }

1273 return data_checkbox;

1274 }

1275

1276 function checkedeachValue(checkeddata){

1277 var value;

1278 var checkedValue = document.querySelector('#'+checkeddata+':

checked');

1279 if(checkedValue == null){

1280 value = "null";

1281 } else {

1282 value = checkedValue.value;

364



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1283 }

1284 return value;

1285 }

1286

1287 var width = $(window).width()

1288 var height = $(window).height()

1289

1290 var section_top_height = $("#section_top").height()

1291

1292 var svgSection = d3.select('#section_top').append('svg')

1293 .attr('width', width * 0.655)

1294 .attr('height', (section_top_height*0.935))

1295 .call(d3.zoom().scaleExtent([0.5, 5]).on("zoom", function () {

1296 svgSection.attr("transform", d3.event.transform)

1297 }))

1298 .append("g");

1299

1300 var right_top_height = $("#right_top").height()

1301

1302 var svgright_top = d3.select("#right_top")

1303 .append("svg")

1304 .attr("width", width * 0.172)

1305 .attr("height", (right_top_height*0.63))

1306

1307 svgright_top.append("rect")

1308 .attr("class", "svgright_rect")

1309 .attr("x", width * 0.008)

1310 .attr("y", 0)

1311 .attr("width", (width * 0.162))

1312 .attr("height",(right_top_height*0.63))

1313 .attr("rx", 6)

365



1314 .attr("ry", 6)

1315 .attr("fill", "white")

1316 .attr('stroke', '#C2C1C1')

1317 .attr('stroke-width', '2')

1318

1319 var NodeGroup = svgSection.append("g");

1320

1321 var div_inner = d3.select("#section").append("div")

1322 .attr("class", "tooltip")

1323 .style("opacity", 0);

1324

1325 firstdrawdata();

1326 op_function_change();

1327 var originalsize = $("#nodegroup.nodetext").css("font-size");

1328

1329 d3.selectAll("#op_postposition").on("change",

op_function_change);

1330 d3.selectAll("#op_function").on("change", drawall);

1331 d3.selectAll("#op_method").on("change", drawall);

1332 d3.selectAll("#op_window").on("change", drawall);

1333 d3.selectAll("#container_leftbottom").on("change", drawall);

1334 d3.selectAll("#onoff").on("change", drawall);

1335 d3.selectAll("#op_node_size").on("change", drawall);

1336 d3.selectAll("#op_node_color").on("change", drawall);

1337

1338 function drawall(){

1339 var selected_postposition = $( "#op_postposition" ).val();

1340 var selected_function = $( "#op_function" ).val();

1341 var selected_method = $( "#op_method" ).val();

1342 var selected_window = $( "#op_window" ).val();

1343 var selected_node_size = $( "#op_node_size" ).val();

366



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1344 var selected_node_color = $( "#op_node_color" ).val();

1345 drawconcordance_table(sentence_concordance,

selected_postposition)

1346 var partofspeeches = checkbox();

1347 changedrawdata(selected_postposition,selected_function,

selected_method,selected_window,selected_node_size,

selected_node_color,partofspeeches)

1348 }

1349

1350 function firstdrawdata() {

1351 var data = [];

1352 for (var i = 0; i < network_info.length ; i++) {

1353 if ((network_info[i].postposition === 'ey') && (network_info[i

].function === 'loc') && (network_info[i].method === '

ppmi_svd') && (network_info[i].window === 'window1')) {

1354 data.push(network_info[i]);

1355 }

1356 }

1357

1358 drawtable(data[0]);

1359 drawnetwork(data[0]);

1360 var map_data = [];

1361 for (var i = 0; i < DSMs_info.length ; i++) {

1362 if ((DSMs_info[i].postposition === 'ey') && (DSMs_info[i].

method === 'ppmi_svd') && (DSMs_info[i].window === 'window1

')) {

1363 for (var j = 0; j < DSMs_info[i].wordnet.length ; j++) {

1364 var each = {

1365 opacity_value: []

1366 };

1367 each.opacity_value.push(0.6);

367



1368 var settings = $.extend({}, each, DSMs_info[i].wordnet[j]);

1369 map_data.push(settings);

1370 }

1371 }

1372 }

1373

1374 var w = width*0.6;

1375 var h = section_top_height;

1376 var padding = (section_top_height*0.12);

1377

1378 var xScale = d3.scale.linear()

1379 .domain([d3.min(map_data, function(d) { return d.y; }), d3.max

(map_data, function(d) { return d.x; })])

1380 .range([0+padding, w-padding]);

1381

1382 var yScale = d3.scale.linear()

1383 .domain([d3.min(map_data, function(d) { return d.y; }), d3.max

(map_data, function(d) { return d.y; })])

1384 .range([h-padding, 0+padding]);

1385

1386 NodeGroup.selectAll(".nodedot")

1387 .data(map_data)

1388 .enter()

1389 .append("circle")

1390 .attr("class", "nodedot")

1391 .attr("id", "nodegroup")

1392 .attr("cx", function (d) {

1393 return xScale(d.x)

1394 })

1395 .attr("cy", function (d) {

1396 return yScale(d.y)

368



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1397 })

1398 .attr("r", function (d) {

1399 if(d.pos=="JKB"){

1400 return 10

1401 } else {

1402 var size = (d.frequency/30 * 4)

1403 if (size <= 4) {

1404 return 4

1405 } else if (20 <= size) {

1406 return 20

1407 } else {

1408 return size

1409 }

1410 }

1411 })

1412 .attr("fill", function (d) {

1413 if (d.pos == POS_name[0]) {

1414 return POS_color[0]

1415 } else if (d.pos == POS_name[1]) {

1416 return POS_color[1]

1417 } else if (d.pos == POS_name[2]) {

1418 return POS_color[2]

1419 } else if (d.pos == POS_name[3]) {

1420 return POS_color[3]

1421 } else if (d.pos == POS_name[4]) {

1422 return POS_color[4]

1423 } else if (d.pos == POS_name[5]) {

1424 return POS_color[5]

1425 } else if (d.pos == POS_name[6]) {

1426 return POS_color[6]

1427 } else if (d.pos == POS_name[7]) {

369



1428 return POS_color[7]

1429 } else if (d.pos == POS_name[8]) {

1430 return POS_color[8]

1431 } else if (d.pos == POS_name[9]) {

1432 return POS_color[9]

1433 }

1434 })

1435 .attr("stroke", "black")

1436 .attr("stroke-width", "1px")

1437 .attr("opacity", function (d) {

1438 return d.opacity_value

1439 })

1440 .style("cursor", "pointer")

1441 .on("mouseover", function (d) {

1442 d3.select(this)

1443 .attr("stroke", "black")

1444 .attr("stroke-width", "1px")

1445 .attr("opacity", 1)

1446 })

1447 .on("mouseout", function (d) {

1448 d3.select(this)

1449 .attr("stroke", "black")

1450 .attr("stroke-width", "1px")

1451 .attr("opacity", function (d) {

1452 return d.opacity_value

1453 });

1454 })

1455 .on("mouseenter", function (d) {

1456 if(d.pos=="JKB"){

1457 div_inner.transition()

1458 .duration(200)

370



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1459 .style("opacity", 0.85);

1460 div_inner.html("<strong>Selected word</strong><br/><h5>Name_kr

: "+d.name_kr + "<h5/><h5>Name_eng : " + d.name_eng + "

<h5/><h5>POS : " + d.pos_long+ "<h5/><h5>POS_kr : " +

d.pos_kr+ "<h5/><h5>POS_eng : " + d.pos_eng + "<h5/><h5>

Frequency : " + d.frequency+"<h5/>")

1461 .style("right", "20px")

1462 .style("top", "20px");

1463 } else {

1464 div_inner.transition()

1465 .duration(200)

1466 .style("opacity", 0.85);

1467 div_inner.html("<strong>Selected word</strong><br/><h5>Name_kr

: "+d.name_kr + "<h5/><h5>Name_eng : " + d.name_eng + "

<h5/><h5>POS : " + d.pos+ "<h5/><h5>POS_kr : " + d.pos_kr

+ "<h5/><h5>POS_eng : " + d.pos_eng + "<h5/><h5>Frequency

: " + d.frequency+"<h5/>")

1468 .style("right", "20px")

1469 .style("top", "20px");

1470 }

1471 })

1472 .on("mouseleave", function () {

1473 div_inner.transition()

1474 .duration(500)

1475 .style("opacity", 0);

1476 });

1477

1478 NodeGroup.selectAll(".nodetext")

1479 .data(map_data)

1480 .enter()

1481 .append("text")

371



1482 .attr("class", "nodetext")

1483 .attr("id", "nodegroup")

1484 .text(function (d) {

1485 if(d.pos=="JKB"){

1486 return d.name_kr+"/"+d.name_eng+"/"+d.pos_long;

1487 } else {

1488 return d.name_kr+"/"+d.name_eng+"/"+d.pos;

1489 }

1490 })

1491 .attr("x", function (d) {

1492 return xScale(d.x) + 10

1493 })

1494 .attr("y", function (d) {

1495 return yScale(d.y) + 4

1496 })

1497 .attr("font-family", "sans-serif")

1498 .attr("fill", "rgb(51,51,51)")

1499 .attr("opacity", function (d) {

1500 return d.opacity_value

1501 })

1502 .style("cursor", "pointer")

1503 .on("mouseover", function () {

1504 d3.select(this)

1505 .attr("opacity", 1);

1506 })

1507 .on("mouseout", function (d) {

1508 d3.select(this)

1509 .attr("opacity", function (d) {

1510 return d.opacity_value

1511 });

1512 })

372



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1513 .on("mouseenter", function (d) {

1514 if(d.pos=="JKB"){

1515 div_inner.transition()

1516 .duration(200)

1517 .style("opacity", 0.85);

1518 div_inner.html("<strong>Selected word</strong><br/><h5>Name_kr

: "+d.name_kr + "<h5/><h5>Name_eng : " + d.name_eng + "

<h5/><h5>POS : " + d.pos_long+ "<h5/><h5>POS_kr : " +

d.pos_kr+ "<h5/><h5>POS_eng : " + d.pos_eng + "<h5/><h5>

Frequency : " + d.frequency+"<h5/>")

1519 .style("right", "20px")

1520 .style("top", "20px");

1521 } else {

1522 div_inner.transition()

1523 .duration(200)

1524 .style("opacity", 0.85);

1525 div_inner.html("<strong>Selected word</strong><br/><h5>Name_kr

: "+d.name_kr + "<h5/><h5>Name_eng : " + d.name_eng + "

<h5/><h5>POS : " + d.pos+ "<h5/><h5>POS_kr : " + d.pos_kr

+ "<h5/><h5>POS_eng : " + d.pos_eng + "<h5/><h5>Frequency

: " + d.frequency+"<h5/>")

1526 .style("right", "20px")

1527 .style("top", "20px");

1528 }

1529

1530 })

1531 .on("mouseleave", function () {

1532 div_inner.transition()

1533 .duration(500)

1534 .style("opacity", 0);

1535 });

373



1536 }

1537

1538 function changedrawdata(selected_postposition,

selected_function,selected_method,selected_window,

selected_node_size,selected_node_color,partofspeeches) {

1539

1540 $('#similaritytable').empty();

1541 svgright_top.selectAll(".networklinks").remove();

1542 svgright_top.selectAll(".networknodes").remove();

1543

1544 var data = [];

1545 for (var i = 0; i < network_info.length ; i++) {

1546 if ((network_info[i].postposition === selected_postposition)

&& (network_info[i].function === selected_function) && (

network_info[i].method === selected_method) && (

network_info[i].window === selected_window)) {

1547 data.push(network_info[i]);

1548 }

1549 }

1550

1551 drawtable(data[0]);

1552 drawnetwork(data[0]);

1553

1554 var map_data = [];

1555 for (var i = 0; i < DSMs_info.length ; i++) {

1556 if ((DSMs_info[i].postposition === selected_postposition) && (

DSMs_info[i].method === selected_method) && (DSMs_info[i].

window === selected_window)) {

1557 for (var j = 0; j < DSMs_info[i].wordnet.length ; j++) {

1558 var each = {

1559 opacity_value: []

374



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1560 };

1561 if(partofspeeches.length > 0 == true){

1562 var checked = false;

1563 for(var k = 0; k < partofspeeches.length ; k++){

1564 if(DSMs_info[i].wordnet[j].pos == partofspeeches[k]){

1565 checked = true;

1566 }

1567 }

1568 if(checked == true){

1569 each.opacity_value.push(0.9);

1570 } else {

1571 each.opacity_value.push(0.2);

1572 }

1573 } else if(partofspeeches.length > 0 == false){

1574 each.opacity_value.push(0.6);

1575 }

1576 var settings = $.extend({}, each, DSMs_info[i].wordnet[j]);

1577 map_data.push(settings);

1578 }

1579 }

1580 }

1581

1582 var w = width*0.6;

1583 var h = section_top_height;

1584 var padding = (section_top_height*0.12);

1585 var xScale = d3.scale.linear()

1586 .domain([d3.min(map_data, function(d) { return d.y; }), d3.max

(map_data, function(d) { return d.x; })])

1587 .range([0+padding, w-padding]);

1588 var yScale = d3.scale.linear()

375



1589 .domain([d3.min(map_data, function(d) { return d.y; }), d3.max

(map_data, function(d) { return d.y; })])

1590 .range([h-padding, 0+padding]);

1591 var circle = NodeGroup.selectAll(".nodedot")

1592 .data(map_data);

1593

1594 circle.enter()

1595 .append("circle")

1596 .attr("class", "nodedot")

1597 .attr("id", "nodegroup")

1598 .attr("cx", function (d) {

1599 return xScale(d.x)

1600 })

1601 .attr("cy", function (d) {

1602 return yScale(d.y)

1603 })

1604 .attr("r", function (d){

1605 if (selected_node_size === "nomal") {

1606 return 4;

1607 } else if (selected_node_size === "frequency") {

1608 if(d.pos=="JKB"){

1609 return 10

1610 } else {

1611 var size = (d.frequency/30 * 4)

1612 if (size <= 4) {

1613 return 4

1614 } else if (20 <= size) {

1615 return 20

1616 } else {

1617 return size

1618 }

376



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1619 }

1620 }

1621 })

1622 .attr("fill", function (d){

1623 if (selected_node_color === "nomal") {

1624 return "rgb(51,51,51)"

1625 } else if (selected_node_color === "pos") {

1626 if (d.pos == POS_name[0]) {

1627 return POS_color[0]

1628 } else if (d.pos == POS_name[1]) {

1629 return POS_color[1]

1630 } else if (d.pos == POS_name[2]) {

1631 return POS_color[2]

1632 } else if (d.pos == POS_name[3]) {

1633 return POS_color[3]

1634 } else if (d.pos == POS_name[4]) {

1635 return POS_color[4]

1636 } else if (d.pos == POS_name[5]) {

1637 return POS_color[5]

1638 } else if (d.pos == POS_name[6]) {

1639 return POS_color[6]

1640 } else if (d.pos == POS_name[7]) {

1641 return POS_color[7]

1642 } else if (d.pos == POS_name[8]) {

1643 return POS_color[8]

1644 } else if (d.pos == POS_name[9]) {

1645 return POS_color[9]

1646 }

1647 }

1648 })

1649 .attr("stroke", "black")

377



1650 .attr("stroke-width", "1px")

1651 .attr("opacity", function (d) {

1652 return d.opacity_value

1653 })

1654 .style("cursor", "pointer");

1655

1656 circle.transition()

1657 .duration(2000)

1658 .attr("cx", function (d) {

1659 return xScale(d.x)

1660 })

1661 .attr("cy", function (d) {

1662 return yScale(d.y)

1663 })

1664 .attr("r", function (d){

1665 if (selected_node_size === "nomal") {

1666 return 4;

1667 } else if (selected_node_size === "frequency") {

1668 if(d.pos=="JKB"){

1669 return 10

1670 } else {

1671 var size = (d.frequency/30 * 4)

1672 if (size <= 4) {

1673 return 4

1674 } else if (20 <= size) {

1675 return 20

1676 } else {

1677 return size

1678 }

1679 }

1680 }

378



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1681 })

1682 .attr("fill", function (d){

1683 if (selected_node_color === "nomal") {

1684 return "rgb(51,51,51)"

1685 } else if (selected_node_color === "pos") {

1686 if (d.pos == POS_name[0]) {

1687 return POS_color[0]

1688 } else if (d.pos == POS_name[1]) {

1689 return POS_color[1]

1690 } else if (d.pos == POS_name[2]) {

1691 return POS_color[2]

1692 } else if (d.pos == POS_name[3]) {

1693 return POS_color[3]

1694 } else if (d.pos == POS_name[4]) {

1695 return POS_color[4]

1696 } else if (d.pos == POS_name[5]) {

1697 return POS_color[5]

1698 } else if (d.pos == POS_name[6]) {

1699 return POS_color[6]

1700 } else if (d.pos == POS_name[7]) {

1701 return POS_color[7]

1702 } else if (d.pos == POS_name[8]) {

1703 return POS_color[8]

1704 } else if (d.pos == POS_name[9]) {

1705 return POS_color[9]

1706 }

1707 }

1708 })

1709 .attr("stroke", "black")

1710 .attr("stroke-width", "1px")

1711 .attr("opacity", function (d) {

379



1712 return d.opacity_value

1713 })

1714 .style("cursor", "pointer");

1715

1716 circle.exit().remove();

1717

1718 var text = NodeGroup.selectAll(".nodetext")

1719 .data(map_data);

1720

1721 text.enter()

1722 .append("text")

1723 .attr("class", "nodetext")

1724 .attr("id", "nodegroup")

1725 .text(function (d) {

1726 if(d.pos=="JKB"){

1727 return d.name_kr+"/"+d.name_eng+"/"+d.pos_long;

1728 } else {

1729 return d.name_kr+"/"+d.name_eng+"/"+d.pos;

1730 }

1731 })

1732 .attr("x", function (d) {

1733 return xScale(d.x) + 10

1734 })

1735 .attr("y", function (d) {

1736 return yScale(d.y) + 4

1737 })

1738 .attr("font-family", "sans-serif")

1739 .attr("fill", "rgb(51,51,51)")

1740 .attr("opacity", function (d) {

1741 return d.opacity_value

1742 })

380



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1743 .style("cursor", "pointer");

1744

1745 text.transition()

1746 .duration(2000)

1747 .text(function (d) {

1748 if(d.pos=="JKB"){

1749 return d.name_kr+"/"+d.name_eng+"/"+d.pos_long;

1750 } else {

1751 return d.name_kr+"/"+d.name_eng+"/"+d.pos;

1752 }

1753 })

1754 .attr("x", function (d) {

1755 return xScale(d.x) + 10

1756 })

1757 .attr("y", function (d) {

1758 return yScale(d.y) + 4

1759 })

1760 .attr("font-family", "sans-serif")

1761 .attr("fill", "rgb(51,51,51)")

1762 .attr("opacity", function (d) {

1763 return d.opacity_value

1764 })

1765 .style("cursor", "pointer");

1766

1767 text.exit().remove();

1768

1769 if(checkedeachValue("onoff")=='null'){

1770 svgSection.selectAll(".nodetext").remove();

1771 }

1772 }

1773

381



1774 function drawtable_first(data){

1775 $('#similaritytable').empty();

1776 for(var i = 0 ; i < data.links.length; i++){

1777 $("#similaritytable").append("<tr style='padding: 0px;'><td>"+

i+"</td><td>"+data.links[i].target+"</td><td>"+data.links[i

].value+"</td><td>"+data.nodes[i].frequency+"</td></tr>");

1778 }

1779 }

1780

1781 function drawtable(data){

1782 $('#similaritytable').empty();

1783 console.log(typeof(data.links[0].target));

1784

1785 if(typeof(data.links[0].target)=="object"){

1786 for(var i = 0 ; i < data.links.length; i++){

1787 $("#similaritytable").append("<tr style='padding: 0px;'><td>"+

i+"</td><td>"+data.links[i].target.id+"</td><td>"+

data.links[i].value+"</td><td>"+data.nodes[i].frequency+"</

td></tr>");

1788 }

1789 } else {

1790 for(var i = 0 ; i < data.links.length; i++){

1791 $("#similaritytable").append("<tr style='padding: 0px;'><td>"+

i+"</td><td>"+data.links[i].target+"</td><td>"+data.links[i

].value+"</td><td>"+data.nodes[i].frequency+"</td></tr>");

1792 }

1793 }

1794 }

1795

1796 function drawnetwork(data){

1797

382



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1798 svgright_top.selectAll(".networklinks").remove();

1799 svgright_top.selectAll(".networknodes").remove();

1800

1801 var simulation = d3.forceSimulation()

1802 .force("link", d3.forceLink().id(function(d) { return d.id; })

.distance(function (d) { return (right_top_height*0.828)

*0.28}))

1803 .force("charge", d3.forceManyBody())

1804 .force("center", d3.forceCenter(width * 0.14 / 2, (

right_top_height*0.63) / 2));

1805

1806 var link = svgright_top.append("g")

1807 .attr("class", "networklinks")

1808 .selectAll("line")

1809 .data(data.links)

1810 .enter().append("line")

1811 .attr("stroke-width", function(d) { return Math.sqrt(d.value

*6); });

1812

1813 var node = svgright_top.append("g")

1814 .attr("class", "networknodes")

1815 .selectAll("g")

1816 .data(data.nodes)

1817 .enter().append("g")

1818

1819 var circles = node.append("circle")

1820 .attr("r", function(d) {

1821 var size = d.frequency/2

1822 if(15 < size){

1823 return 15;

1824 } else if (size < 4){

383



1825 return 4;

1826 } else {

1827 return size;

1828 }

1829 })

1830 .attr("fill", function (d) {

1831 if (d.pos == POS_name[0]) {

1832 return POS_color[0]

1833 } else if (d.pos == POS_name[1]) {

1834 return POS_color[1]

1835 } else if (d.pos == POS_name[2]) {

1836 return POS_color[2]

1837 } else if (d.pos == POS_name[3]) {

1838 return POS_color[3]

1839 } else if (d.pos == POS_name[4]) {

1840 return POS_color[4]

1841 } else if (d.pos == POS_name[5]) {

1842 return POS_color[5]

1843 } else if (d.pos == POS_name[6]) {

1844 return POS_color[6]

1845 } else if (d.pos == POS_name[7]) {

1846 return POS_color[7]

1847 } else if (d.pos == POS_name[8]) {

1848 return POS_color[8]

1849 } else if (d.pos == POS_name[9]) {

1850 return POS_color[9]

1851 } else {

1852 return '#C2C1C1'

1853 }

1854 })

1855 .call(d3.drag()

384



APPENDIX D. CODE FOR THE FIRST VISUALIZATION SYSTEM (I.E., POSTEMBEDDING)

1856 .on("start", dragstarted)

1857 .on("drag", dragged)

1858 .on("end", dragended));

1859

1860 var lables = node.append("text")

1861 .text(function(d) {

1862 return d.id;//.split("/")[0]+"/"+d.id_eng;

1863 })

1864 .attr('x', 6)

1865 .attr('y', 3)

1866 .attr('opacity',0.4)

1867 .on("mouseover", function () {

1868 d3.select(this).attr("opacity", 1);

1869 })

1870 .on("mouseout", function (d) {

1871 d3.select(this).attr("opacity", 0.4);

1872 });

1873

1874 node.append("title")

1875 .text(function(d) { return d.id; });

1876

1877 simulation.nodes(data.nodes)

1878 .on("tick", ticked);

1879

1880 simulation.force("link")

1881 .links(data.links);

1882

1883 function ticked() {

1884 link.attr("x1", function(d) { return d.source.x; })

1885 .attr("y1", function(d) { return d.source.y; })

1886 .attr("x2", function(d) { return d.target.x; })

385



1887 .attr("y2", function(d) { return d.target.y; });

1888

1889 node.attr("transform", function(d) {

1890 return "translate(" + d.x + "," + d.y + ")";

1891 })

1892 }

1893

1894 function dragstarted(d) {

1895 if (!d3.event.active) simulation.alphaTarget(0.3).restart();

1896 d.fx = d.x;

1897 d.fy = d.y;

1898 }

1899

1900 function dragged(d) {

1901 d.fx = d3.event.x;

1902 d.fy = d3.event.y;

1903 }

1904

1905 function dragended(d) {

1906 if (!d3.event.active) simulation.alphaTarget(0);

1907 d.fx = null;

1908 d.fy = null;

1909 }

1910 }

1911 })

1912 </script>

1913 </body>

1914 </html>

386



Appendix E
Code for the second visualization system

(i.e., PostBERT)

The following script is the code that I used to develop the second visualiza-

tion system (i.e., PostBERT).

Listing E.1: JavaScript code for developing PostBERT

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>PostBERT</title><!--<link rel="stylesheet" href="./

stylesheets/bubble_style.css">-->

5 <meta http-equiv="Content-Type" content="text/html;

charset=utf-8">

6 <script src="./javascripts/d3.v3.min.js" charset="utf-8">

</script>

7 <script src="./javascripts/d3.v4.js" charset="utf-8">

</script>

8 <script src="./javascripts/jquery-1.12.0.min.js" charset="

utf-8"></script>

387

https://seongmin-mun.github.io/VisualSystem/Major/PostBERT/index.html


9 <link rel="stylesheet" href="https://

maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/

bootstrap.min.css">

10 <script src="https://maxcdn.bootstrapcdn.com/bootstrap

/3.3.7/js/bootstrap.min.js"></script>

11 <!--<link rel="stylesheet" href="./stylesheets/PostVis.css

">-->

12

13 <script src="./Data/Madpdata.js" charset="utf-8"></script>

14 <script src="./Data/Sentencedata.js" charset="utf-8">

</script>

15 <script src="./Data/Accuracydata.js" charset="utf-8">

</script>

16 <script src="./Data/Clusterdata.js" charset="utf-8">

</script>

17

18 <style>

19 body {

20 margin: 0;

21 }

22

23 #header{

24 position:relative;

25 width:100%;

26 height:50px;

27 background-color:#f3c623;

28 background-clip: content-box;

29 }

30

31 #left {

32 position:relative;

388



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

33 float:left;

34 overflow:hidden;

35 width:14%;

36 height:920px;

37 padding: 0.5%;

38 background-color:whitesmoke;

39 background-clip: content-box;

40 }

41

42 #left_top {

43 position:relative;

44 float:left;

45 overflow:hidden;

46 width:100%;

47 height:85px;

48 padding: 0.5%;

49 background-clip: content-box;

50 }

51

52 #left_middle {

53 position:relative;

54 float:left;

55 overflow:hidden;

56 width:100%;

57 height:250px;

58 padding: 0.5%;

59 background-clip: content-box;

60 }

61

62 #left_bottom {

63 position:relative;

389



64 float:left;

65 overflow:hidden;

66 width:100%;

67 height:290px;

68 padding: 0.5%;

69 background-clip: content-box;

70 }

71

72 #left_bottom_bottom {

73 position:relative;

74 float:left;

75 overflow:hidden;

76 width:100%;

77 height:355px;

78 padding: 0.5%;

79 background-clip: content-box;

80 }

81

82

83 #section {

84 position:relative;

85 float:left;

86 overflow:hidden;

87 width:57%;

88 height:920px;

89 padding: 0.5%;

90 background-clip: content-box;

91 }

92

93 #section_top {

94 position:relative;

390



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

95 float:left;

96 overflow:hidden;

97 width:100%;

98 height:795px;

99 padding-right: : 0.5%;

100 padding-top: 0.5%;

101 padding-left: 0.5%;

102 background-clip: content-box;

103 }

104

105 #section_bottom {

106 position:relative;

107 float:left;

108 overflow:hidden;

109 width:100%;

110 height:120px;

111 padding-right: : 0.5%;

112 padding-bottom: 0.5%;

113 padding-left: 0.5%;

114 background-clip: content-box;

115 }

116

117 #section_bottom_left {

118 position:relative;

119 float:left;

120 overflow:hidden;

121 width:12%;

122 height:80px;

123 padding-right: : 0.5%;

124 padding-bottom: 0.5%;

125 padding-left: 0.5%;

391



126 background-clip: content-box;

127 }

128

129 #section_bottom_right {

130 position:relative;

131 float:left;

132 overflow:hidden;

133 width:88%;

134 height:80px;

135 padding-right: : 0.5%;

136 padding-bottom: 0.5%;

137 padding-left: 0.5%;

138 background-clip: content-box;

139 }

140

141 #right {

142 position:relative;

143 float:right;

144 overflow:hidden;

145 width:29%;

146 height:920px;

147 padding: 0.5%;

148 background-color:whitesmoke;

149 background-clip: content-box;

150 }

151

152 #right_top {

153 position:relative;

154 float:left;

155 overflow:hidden;

156 width:100%;

392



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

157 height:300px;

158 padding: 0.5%;

159 background-clip: content-box;

160 }

161

162 #right_middle {

163 position:relative;

164 float:left;

165 overflow:hidden;

166 width:100%;

167 height:300px;

168 padding: 0.5%;

169 background-clip: content-box;

170 }

171

172

173 #right_bottom {

174 position:relative;

175 float:left;

176 overflow:hidden;

177 width:100%;

178 height:305px;

179 padding: 0.5%;

180 background-clip: content-box;

181 }

182

183 #header_left{

184 float:left;

185 width:49%;

186 height:50px;

187 padding-top: 0.1%;

393



188 background-clip: content-box;

189 }

190

191 #header_right{

192 float:right;

193 width:49%;

194 height:50px;

195 padding-top: 0.1%;

196 background-clip: content-box;

197 }

198

199 #footer {

200 height:20px;

201 text-align: center;

202 color: white;

203 background-color:#717171;

204 clear:both;

205 }

206

207

208 p#left_option {

209 text-align: left;

210 font-family: Open Sans;

211 font-size: 1.5em;

212 color: #666666;

213 font-weight: bold;

214 padding-top: 4%;

215 padding-bottom: 4%;

216 padding-left: 5%;

217 margin: 0;

218 }

394



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

219

220 p#right_option {

221 text-align: left;

222 font-family: Open Sans;

223 font-size: 1.6em;

224 color: #666666;

225 font-weight: bold;

226 padding-top: 4%;

227 padding-bottom: 4%;

228 padding-left: 5%;

229 margin: 0;

230 }

231

232 p#section_top_p {

233 font-family: Open Sans;

234 font-size: 1.5em;

235 color: #666666;

236 font-weight: bold;

237 padding-left: 1%;

238 margin: 0;

239 }

240

241 p#section_bottom_p {

242 font-family: Open Sans;

243 font-size: 1.5em;

244 color: #666666;

245 font-weight: bold;

246 padding-left: 1%;

247 margin: 0;

248 }

249

395



250 p#header_p_left {

251 position: relative;

252 text-align: left;

253 font-family: Open Sans;

254 font-size: 2em;

255 color: white;

256 font-weight: bold;

257 padding-top: 0.5%;

258 padding-bottom: 0.5%;

259 padding-left: 1%;

260 margin: 0;

261 }

262

263 p#header_p_right {

264 position: relative;

265 text-align: right;

266 font-family: Open Sans;

267 font-size: 2em;

268 color: white;

269 font-weight: bold;

270 padding-top: 0.5%;

271 padding-bottom: 0.5%;

272 padding-right: 2%;

273 margin: 0;

274 }

275

276 p#footer_p{

277 font-size: 1em;

278 }

279

280 a#header_a{

396



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

281 font-family: Open Sans;

282 color: white;

283 font-weight: bold;

284 cursor: pointer;

285 }

286

287 a#footer_a{

288 font-family: Open Sans;

289 color: #f3c623;

290 font-weight: bold;

291 cursor: pointer;

292 }

293

294

295 select#op_postposition { /*text-align-last:center;*/

296 width: 90%;

297 height: 30px;

298 font-size: 17px;

299 border-radius: 3px;

300 position: relative;

301 left:5%;

302 background: white;

303 cursor: pointer;

304 }

305

306 /*select#op_node_color {

307 width: 90%;

308 height: 30px;

309 font-size: 17px;

310 border-radius: 3px;

311 position: relative;

397



312 left:5%;

313 background: white;

314 cursor: pointer;

315 }*/

316

317 #container_leftmiddle {

318 border:2px solid #ccc;

319 width:88%;

320 height: 200px;

321 position: absolute;

322 left: 5%;

323 overflow-y: scroll;

324 overflow-x: auto;

325 white-space: nowrap;

326 border-radius: 10px;

327 background: white;

328 }

329

330 .CB_leftmiddle {

331 cursor: pointer;

332 position: relative;

333 font-size: 14px;

334 left:5%;

335 }

336

337

338 #container_leftbottom {

339 border:2px solid #ccc;

340 width:88%;

341 height: 240px;

342 position: absolute;

398



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

343 left: 5%;

344 overflow-y: scroll;

345 overflow-x: auto;

346 white-space: nowrap;

347 border-radius: 10px;

348 background: white;

349 }

350

351 .CB_leftbottom{

352 cursor: pointer;

353 position: relative;

354 font-size: 14px;

355 left:5%;

356 }

357

358

359

360 #play-button {

361 position: absolute;

362 top: 25%;

363 background: #f08080;

364 padding-right: 10px;

365 border-radius: 3px;

366 border: none;

367 color: white;

368 margin: 0;

369 width: 80%;

370 cursor: pointer;

371 height: 40%;

372 font: 13px sans-serif;

373 }

399



374

375 #play-button:hover {

376 background-color: #696969;

377 }

378

379 #play-button:active {

380 background-color: #002657;

381 }

382

383

384 .ticks {

385 font: 10px sans-serif;

386 }

387

388 .track,

389 .track-inset,

390 .track-overlay {

391 stroke-linecap: round;

392 }

393

394 .track {

395 stroke: #000;

396 stroke-opacity: 0.3;

397 stroke-width: 10px;

398 }

399

400 .track-inset {

401 stroke: #dcdcdc;

402 stroke-width: 8px;

403 }

404

400



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

405 .track-overlay {

406 pointer-events: stroke;

407 stroke-width: 50px;

408 cursor: pointer;

409 }

410

411 .handle {

412 fill: #fff;

413 stroke: #000;

414 stroke-opacity: 0.5;

415 stroke-width: 1.25px;

416 }

417

418

419 div.tooltip {

420 position: absolute;

421 text-align: left;

422 padding: 5px;

423 font-size: 17px;

424 background-color: #efefef;

425 border: solid 1px #cecece;

426 border-radius: 8px;

427 box-shadow: 0 3px 5px 0 #dfdfdf;

428 pointer-events: none;

429 }

430

431 div.epoch {

432 position: absolute;

433 text-align: right;

434 padding: 5px;

435 font-size: 40px;

401



436 background-color: white;

437 border: solid 1px white;

438 border-radius: 8px;

439 pointer-events: none;

440 }

441

442 #corBar:hover {

443 fill: orange;

444 }

445

446 #tooltip_top {

447 position: absolute;

448 width: 120px;

449 height: auto;

450 padding: 10px;

451 background-color: white;

452 -webkit-border-radius: 10px;

453 -moz-border-radius: 10px;

454 border-radius: 10px;

455 -webkit-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);

456 -moz-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);

457 box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);

458 pointer-events: none;

459 font-size: 16px;

460 }

461

462 #tooltip_top.hidden {

463 display: none;

464 }

465

466 #tooltip_top p {

402



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

467 margin: 0;

468 font-family: sans-serif;

469 line-height: 20px;

470 }

471

472

473 #tooltip_middle {

474 position: absolute;

475 width: 120px;

476 height: auto;

477 padding: 10px;

478 background-color: white;

479 -webkit-border-radius: 10px;

480 -moz-border-radius: 10px;

481 border-radius: 10px;

482 -webkit-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);

483 -moz-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);

484 box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);

485 pointer-events: none;

486 font-size: 16px;

487 }

488

489 #tooltip_middle.hidden {

490 display: none;

491 }

492

493 #tooltip_middle p {

494 margin: 0;

495 font-family: sans-serif;\

496 line-height: 20px;

497 }

403



498

499 .rightbottom_bar:hover {

500 fill: #f08080;

501 }

502

503 #tooltip_bottom {

504 position: absolute;

505 width: 160px;

506 height: auto;

507 padding: 10px;

508 background-color: white;

509 -webkit-border-radius: 10px;

510 -moz-border-radius: 10px;

511 border-radius: 10px;

512 -webkit-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);

513 -moz-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);

514 box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4);

515 pointer-events: none;

516 opacity: 0.7;

517 }

518

519 #tooltip_bottom.hidden {

520 display: none;

521 }

522

523 #tooltip_bottom p {

524 margin: 0;

525 font-family: sans-serif;

526 font-size: 16px;

527 line-height: 20px;

528 }

404



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

529

530 p.tooltip_topdiv{

531 font-size: 16px;

532 }

533 p.tooltip_middlediv{

534 font-size: 16px;

535 }

536

537 h5 {

538 font-size: 15px;

539 }

540

541

542 @media all and (min-width:951px) and (max-height: 1000px)

{ /*0.95*/

543 #header{

544 height:47.55px;

545 }

546 #header_left{

547 height:47.55px;

548 }

549

550 #header_right{

551 height:47.55px;

552 }

553

554 #left {

555 height:874px;

556 }

557

558 #left_top {

405



559 height:80.75px;

560 }

561

562 #left_middle {

563 height:237.5px;

564 }

565

566 #left_bottom {

567 height:275.5px;

568 }

569

570 #left_bottom_bottom {

571 height:337.25px;

572 }

573 #section {

574 height:874px;

575 }

576

577 #section_top {

578 height:755.25px;

579 }

580

581 #section_bottom {

582 height:114px;

583 }

584

585 #section_bottom_left {

586 height:76px;

587 }

588

589 #section_bottom_right {

406



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

590 height:76px;

591 }

592

593 #right {

594 height:874px;

595 }

596

597 #right_top {

598 height:285px;

599 }

600

601 #right_middle {

602 height:285px;

603 }

604 #right_bottom {

605 height:289.75px;

606 }

607

608 #footer {

609 height:19px;

610 }

611

612 p#left_option {

613 font-size: 1.425em;

614 }

615 p#section_top_p {

616 font-size: 1.425em;

617 }

618 p#section_bottom_p {

619 font-size: 1.425em;

620 }

407



621 p#right_option {

622 font-size: 1.52em;

623 }

624 p#header_p_left {

625 font-size: 1.9em;

626 }

627 p#header_p_right {

628 font-size: 1.9em;

629 }

630 p#footer_p{

631 font-size: 0.95em;

632 }

633 select#op_postposition {

634 height: 28.5px;

635 font-size: 16.15px;

636 }

637 #container_leftmiddle {

638 height: 190px;

639 border-radius: 9.5px;

640 }

641 #container_leftbottom {

642 height: 228px;

643 border-radius: 9.5px;

644 }

645 .CB_leftmiddle {

646 font-size: 13.3px;

647 }

648

649 .CB_leftbottom{

650 font-size: 13.3px;]

651 }

408



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

652 #play-button {

653 font: 12.35px sans-serif;

654 }

655 .ticks {

656 font: 9.5px sans-serif;

657 }

658 .track {

659 stroke-width: 9.5px;

660 }

661 .track-inset {

662 stroke-width: 7.6px;

663 }

664 .track-overlay {

665 stroke-width: 47.5px;

666 }

667 div.tooltip {

668 font-size: 16.15px;

669 }

670 div.epoch {

671 font-size: 38px;

672 }

673 #tooltip_top {

674 width: 114px;

675 font-size: 15.2px;

676 }

677 #tooltip_middle {

678 width: 114px;

679 font-size: 15.2px;

680 }

681 #tooltip_bottom {

682 width: 152px;

409



683 }

684 #tooltip_bottom p {

685 font-size: 15.2px;

686 }

687 h5 {

688 font-size: 14.25px;

689 }

690

691 text.rightbottom_text {

692 font-size: 19px;

693 }

694 text.rangetext{

695 font-size: 19.95px;

696 }

697

698 }

699

700

701 @media all and (min-width:901px) and (max-height: 950px) {

/*0.90*/

702 #header{

703 height:45px;

704 }

705 #header_left{

706 height:45px;

707 }

708

709 #header_right{

710 height:45px;

711 }

712

410



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

713 #left {

714 height:828px;

715 }

716

717 #left_top {

718 height:76.5px;

719 }

720

721 #left_middle {

722 height:225px;

723 }

724

725 #left_bottom {

726 height:261px;

727 }

728

729 #left_bottom_bottom {

730 height:319.5px;

731 }

732 #section {

733 height:828px;

734 }

735

736 #section_top {

737 height:715.5px;

738 }

739

740 #section_bottom {

741 height:108px;

742 }

743

411



744 #section_bottom_left {

745 height:72px;

746 }

747

748 #section_bottom_right {

749 height:72px;

750 }

751

752 #right {

753 height:828px;

754 }

755

756 #right_top {

757 height:270px;

758 }

759

760 #right_middle {

761 height:270px;

762 }

763

764

765 #right_bottom {

766 height:274.5px;

767 }

768

769 #footer {

770 height:18px;

771 }

772

773 p#left_option {

774 font-size: 1.35em;

412



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

775 }

776 p#section_top_p {

777 font-size: 1.35em;

778 }

779 p#section_bottom_p {

780 font-size: 1.35em;

781 }

782 p#right_option {

783 font-size: 1.44em;

784 }

785 p#header_p_left {

786 font-size: 1.8em;

787 }

788 p#header_p_right {

789 font-size: 1.8em;

790 }

791 p#footer_p{

792 font-size: 0.9em;

793 }

794 select#op_postposition {

795 height: 27px;

796 font-size: 15.3px;

797 }

798 #container_leftmiddle {

799 height: 180px;

800 border-radius: 9px;

801 }

802 #container_leftbottom {

803 height: 216px;

804 border-radius: 9px;

805 }

413



806 .CB_leftmiddle {

807 font-size: 12.6px;

808 }

809

810 .CB_leftbottom{

811 font-size: 12.6px;]

812 }

813 #play-button {

814 font: 11.7px sans-serif;

815 }

816 .ticks {

817 font: 9px sans-serif;

818 }

819 .track {

820 stroke-width: 9px;

821 }

822 .track-inset {

823 stroke-width: 7.2px;

824 }

825 .track-overlay {

826 stroke-width: 45px;

827 }

828 div.tooltip {

829 font-size: 15.3px;

830 }

831 div.epoch {

832 font-size: 36px;

833 }

834 #tooltip_top {

835 width: 108px;

836 font-size: 14.4px;

414



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

837 }

838 #tooltip_middle {

839 width: 108px;

840 font-size: 14.4px;

841 }

842 #tooltip_bottom {

843 width: 144px;

844 }

845 #tooltip_bottom p {

846 font-size: 14.4px;

847 }

848 h5 {

849 font-size: 13.5px;

850 }

851

852 text.rightbottom_text {

853 font-size: 18px;

854 }

855 text.rangetext{

856 font-size: 18.9px;

857 }

858 }

859

860

861 @media all and (min-width:819px) and (max-height: 900px) {

/*0.82*/

862 #header{

863 height:40.95px;

864 }

865 #header_left{

866 height:40.95px;

415



867 }

868

869 #header_right{

870 height:40.95px;

871 }

872 #left {

873 height:754.4px;

874 }

875

876 #left_top {

877 height:69.7px;

878 }

879

880 #left_middle {

881 height:205px;

882 }

883

884 #left_bottom {

885 height:237.8px;

886 }

887

888 #left_bottom_bottom {

889 height:291.1px;

890 }

891 #section {

892 height:754.4px;

893 }

894

895 #section_top {

896 height:651.9px;

897 }

416



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

898

899 #section_bottom {

900 height:98.4px;

901 }

902

903 #section_bottom_left {

904 height:65.6px;

905 }

906

907 #section_bottom_right {

908 height:65.6px;

909 }

910

911 #right {

912 height:754.4px;

913 }

914

915 #right_top {

916 height:246px;

917 }

918

919 #right_middle {

920 height:246px;

921 }

922

923

924 #right_bottom {

925 height:250.1px;

926 }

927

928 #footer {

417



929 height:16.4px;

930 }

931

932 p#left_option {

933 font-size: 1.23em;

934 }

935 p#section_top_p {

936 font-size: 1.23em;

937 }

938 p#section_bottom_p {

939 font-size: 1.23em;

940 }

941 p#right_option {

942 font-size: 1.312em;

943 }

944 p#header_p_left {

945 font-size: 1.64em;

946 }

947 p#header_p_right {

948 font-size: 1.64em;

949 }

950 p#footer_p{

951 font-size: 0.82em;

952 }

953 select#op_postposition {

954 height: 24.6px;

955 font-size: 13.94px;

956 }

957 #container_leftmiddle {

958 height: 164px;

959 border-radius: 8.2px;

418



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

960 }

961 #container_leftbottom {

962 height: 196.8px;

963 border-radius: 8.2px;

964 }

965 .CB_leftmiddle {

966 font-size: 11.48px;

967 }

968

969 .CB_leftbottom{

970 font-size: 11.48px;]

971 }

972 #play-button {

973 font: 10.66px sans-serif;

974 }

975 .ticks {

976 font: 8.2px sans-serif;

977 }

978 .track {

979 stroke-width: 8.2px;

980 }

981 .track-inset {

982 stroke-width: 6.56px;

983 }

984 .track-overlay {

985 stroke-width: 41px;

986 }

987 div.tooltip {

988 font-size: 13.94px;

989 }

990 div.epoch {

419



991 font-size: 32.8px;

992 }

993 #tooltip_top {

994 width: 98.4px;

995 font-size: 13.12px;

996 }

997 #tooltip_middle {

998 width: 98.4px;

999 font-size: 13.12px;

1000 }

1001 #tooltip_bottom {

1002 width: 131.2px;

1003 }

1004 #tooltip_bottom p {

1005 font-size: 13.12px;

1006 }

1007 h5 {

1008 font-size: 12.3px;

1009 }

1010

1011 text.rightbottom_text {

1012 font-size: 16.4px;

1013 }

1014 text.rangetext{

1015 font-size: 17.22px;

1016 }

1017 }

1018

1019 @media all and (min-width:701px) and (max-height: 818px) {

/*0.72*/

1020 #header{

420



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1021 height:35.05px;

1022 }

1023 #header_left{

1024 height:35.05px;

1025 }

1026

1027 #header_right{

1028 height:35.05px;

1029 }

1030 #left {

1031 height:662.4px;

1032 }

1033

1034 #left_top {

1035 height:61.2px;

1036 }

1037

1038 #left_middle {

1039 height:180px;

1040 }

1041

1042 #left_bottom {

1043 height:208.8px;

1044 }

1045

1046 #left_bottom_bottom {

1047 height:255.6px;

1048 }

1049 #section {

1050 height:662.4px;

1051 }

421



1052

1053 #section_top {

1054 height:572.4px;

1055 }

1056

1057 #section_bottom {

1058 height:86.4px;

1059 }

1060

1061 #section_bottom_left {

1062 height:57.6px;

1063 }

1064

1065 #section_bottom_right {

1066 height:57.6px;

1067 }

1068

1069 #right {

1070 height:662.4px;

1071 }

1072

1073 #right_top {

1074 height:216px;

1075 }

1076

1077 #right_middle {

1078 height:216px;

1079 }

1080

1081

1082 #right_bottom {

422



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1083 height:219.6px;

1084 }

1085

1086 #footer {

1087 height:14.4px;

1088 }

1089

1090 p#left_option {

1091 font-size: 1.08em;

1092 }

1093 p#section_top_p {

1094 font-size: 1.08em;

1095 }

1096 p#section_bottom_p {

1097 font-size: 1.08em;

1098 }

1099 p#right_option {

1100 font-size: 1.152em;

1101 }

1102 p#header_p_left {

1103 font-size: 1.44em;

1104 }

1105 p#header_p_right {

1106 font-size: 1.44em;

1107 }

1108 p#footer_p{

1109 font-size: 0.72em;

1110 }

1111 select#op_postposition {

1112 height: 21.6px;

1113 font-size: 12.24px;

423



1114 }

1115 #container_leftmiddle {

1116 height: 144px;

1117 border-radius: 7.2px;

1118 }

1119 #container_leftbottom {

1120 height: 172.8px;

1121 border-radius: 7.2px;

1122 }

1123 .CB_leftmiddle {

1124 font-size: 10.08px;

1125 }

1126

1127 .CB_leftbottom{

1128 font-size: 10.08px;]

1129 }

1130 #play-button {

1131 font: 9.36px sans-serif;

1132 }

1133 .ticks {

1134 font: 7.2px sans-serif;

1135 }

1136 .track {

1137 stroke-width: 7.2px;

1138 }

1139 .track-inset {

1140 stroke-width: 5.76px;

1141 }

1142 .track-overlay {

1143 stroke-width: 36px;

1144 }

424



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1145 div.tooltip {

1146 font-size: 12.24px;

1147 }

1148 div.epoch {

1149 font-size: 28.8px;

1150 }

1151 #tooltip_top {

1152 width: 86.4px;

1153 font-size: 11.52px;

1154 }

1155 #tooltip_middle {

1156 width: 86.4px;

1157 font-size: 11.52px;

1158 }

1159 #tooltip_bottom {

1160 width: 115.2px;

1161 }

1162 #tooltip_bottom p {

1163 font-size: 11.52px;

1164 }

1165 h5 {

1166 font-size: 10.8px;

1167 }

1168

1169 text.rightbottom_text {

1170 font-size: 14.4px;

1171 }

1172 text.rangetext{

1173 font-size: 15.12px;

1174 }

1175 }

425



1176

1177 @media all and (min-width:450px) and (max-height: 700px) {

/*0.45*/

1178 #header{

1179 height:22.5px;

1180 }

1181 #header_left{

1182 height:22.5px;

1183 }

1184

1185 #header_right{

1186 height:22.5px;

1187 }

1188 #left {

1189 height:414px;

1190 }

1191

1192 #left_top {

1193 height:38.25px;

1194 }

1195

1196 #left_middle {

1197 height:112.5px;

1198 }

1199

1200 #left_bottom {

1201 height:130.5px;

1202 }

1203

1204 #left_bottom_bottom {

1205 height:159.75px;

426



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1206 }

1207 #section {

1208 height:414px;

1209 }

1210

1211 #section_top {

1212 height:357.75px;

1213 }

1214

1215 #section_bottom {

1216 height:54px;

1217 }

1218

1219 #section_bottom_left {

1220 height:36px;

1221 }

1222

1223 #section_bottom_right {

1224 height:36px;

1225 }

1226

1227 #right {

1228 height:414px;

1229 }

1230

1231 #right_top {

1232 height:135px;

1233 }

1234

1235 #right_middle {

1236 height:135px;

427



1237 }

1238

1239

1240 #right_bottom {

1241 height:137.25px;

1242 }

1243

1244 #footer {

1245 height:9px;

1246 }

1247

1248 p#left_option {

1249 font-size: 0.675em;

1250 }

1251 p#section_top_p {

1252 font-size: 0.675em;

1253 }

1254 p#section_bottom_p {

1255 font-size: 0.675em;

1256 }

1257 p#right_option {

1258 font-size: 0.72em;

1259 }

1260 p#header_p_left {

1261 font-size: 0.9em;

1262 }

1263 p#header_p_right {

1264 font-size: 0.9em;

1265 }

1266 p#footer_p{

1267 font-size: 0.3em;

428



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1268 }

1269 select#op_postposition {

1270 height: 13.5px;

1271 font-size: 7.65px;

1272 }

1273 #container_leftmiddle {

1274 height: 90px;

1275 border-radius: 4.5px;

1276 }

1277 #container_leftbottom {

1278 height: 108px;

1279 border-radius: 4.5px;

1280 }

1281 .CB_leftmiddle {

1282 font-size: 6.3px;

1283 }

1284

1285 .CB_leftbottom{

1286 font-size: 6.3px;]

1287 }

1288 #play-button {

1289 font: 5.85px sans-serif;

1290 }

1291 .ticks {

1292 font: 4.5px sans-serif;

1293 }

1294 .track {

1295 stroke-width: 4.5px;

1296 }

1297 .track-inset {

1298 stroke-width: 3.6px;

429



1299 }

1300 .track-overlay {

1301 stroke-width: 22.5px;

1302 }

1303 div.tooltip {

1304 font-size: 7.65px;

1305 }

1306 div.epoch {

1307 font-size: 18px;

1308 }

1309 #tooltip_top {

1310 width: 54px;

1311 font-size: 7.2px;

1312 }

1313 #tooltip_middle {

1314 width: 54px;

1315 font-size: 7.2px;

1316 }

1317 #tooltip_bottom {

1318 width: 72px;

1319 }

1320 #tooltip_bottom p {

1321 font-size: 7.2px;

1322 }

1323 h5 {

1324 font-size: 6.75px;

1325 }

1326

1327 text.rightbottom_text {

1328 font-size: 9px;

1329 }

430



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1330 text.rangetext{

1331 font-size: 9.45px;

1332 }

1333 }

1334 </style>

1335 </head>

1336 <body>

1337 <div id="header">

1338 <div id="header_left">

1339 <p id="header_p_left" align="left">PostBERT</p

>

1340 </div>

1341 <div id="header_right" align="right">

1342 <p id="header_p_right"><a id="header_a" href="

https://github.com/seongmin-mun/

VisualSystem/tree/master/Major/PostBERT">

GitHub</a></p>

1343 </div>

1344 </div>

1345 <div id="left">

1346 <div id="left_top">

1347 <p id="left_option">Postposition</p>

1348 <select id="op_postposition">

1349 <option value="ey" selected="selected">

-ey</option>

1350 <option value="eyse">-eyse</option>

1351 <option value="(u)lo">-(u)lo</option>

1352 </select>

1353 </div>

1354 <div id="left_middle">

1355 <p id="left_option">Select function</p>

431



1356 <div id="container_leftmiddle">

1357 </div>

1358 </div>

1359 <div id="left_bottom">

1360 <p id="left_option">Select sentence</p>

1361 <div id="container_leftbottom">

1362 </div>

1363 </div>

1364 <div id="left_bottom_bottom">

1365 <p id="left_option">Density cluster</p>

1366

1367 </div>

1368 </div>

1369 <div id="section">

1370 <div id="section_top">

1371 <p id="section_top_p">t-SNE visualization of

BERT sentence classification</p>

1372 </div>

1373 <div id="section_bottom">

1374 <p id="section_bottom_p">Current epoch</p>

1375 <div id="section_bottom_left">

1376 <button id="play-button">Play</button>

1377 </div>

1378 <div id="section_bottom_right">

1379 </div>

1380 </div>

1381 </div>

1382 <div id="right">

1383 <div id="right_top">

1384 <p id="right_option">Overall accuracy & Loss

</p>

432



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1385 <div id="tooltip_top" style='display:none'>

1386 </div>

1387 </div>

1388 <div id="right_middle">

1389 <p id="right_option">Individual accuracy</p>

1390 <div id="tooltip_middle" style='display:none'>

1391 </div>

1392 </div>

1393 <div id="right_bottom">

1394 <p id="right_option">Bar chart for density

cluster</p>

1395 <div id="tooltip_bottom" class="hidden">

1396 </div>

1397 </div>

1398 </div>

1399 </div>

1400 <div id="footer">

1401 <p id="footer_p">2020 - 2021, <a id="footer_a"

href="https://seongmin-mun.github.io/MyWebsite/

Seongmin/index.html">Seongmin Mun</a>. All

rights reserved.<p>

1402 </div>

1403 <script>

1404 $(document).ready(function () {

1405

1406 var function_name = ['agt','crt','eff','fns','gol','ins','loc'

,'thm','src','dir'];

1407 var function_color = ['#993366','#FF99CC','#FF00FF','#FF6600',

'#000080','#003300',' #0066CC','#666699','#FFCC00','#5b2e90

'];

1408

433



1409 var LeftsectionWidth = $("#left_bottom_bottom").width()

1410 var LeftsectionHeight = $("#left_bottom_bottom").height()

1411

1412 var LeftsvgSection = d3.select('#left_bottom_bottom').append('

svg')

1413 .attr('width', LeftsectionWidth)

1414 .attr('height', (LeftsectionHeight*0.9))

1415

1416 var imgs = LeftsvgSection.append("image")

1417 .attr("class", "PNG")

1418 .attr("xlink:href", "https://seongmin-mun.github.io/

VisualSystem/Major/PostBERT.ko/images/densityClusterPNG_r/

Ey_tSNE_epoch_0.png")

1419 .attr("x", LeftsectionWidth*0.05)

1420 .attr("y", 0)

1421 .attr('width', LeftsectionWidth*0.9)

1422 .attr('height', LeftsectionWidth*0.9);

1423

1424 var sectionWidth = $("#section_top").width()

1425 var sectionHeight = $("#section_top").height()

1426

1427 var svgSection = d3.select('#section_top').append('svg')

1428 .attr('width', sectionWidth)

1429 .attr('height', (sectionHeight*0.935))

1430 .call(d3.zoom().scaleExtent([0.5, 5]).on("zoom", function () {

1431 svgSection.attr("transform", d3.event.transform)

1432 }))

1433 .append("g");

1434

1435 var div_epoch = d3.select("#section").append("div")

1436 .attr("class", "epoch")

434



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1437 .style("opacity", 0.8)

1438 .style("right", sectionWidth*0.03+"px")

1439 .style("top", sectionHeight*0.01+"px");

1440

1441 var textlabel = div_epoch.append("text")

1442 .attr("class", "textlabel")

1443 .attr("text-anchor", "middle")

1444 .text("1 Epoch")

1445 .attr("text-anchor", "end")

1446 .attr("font-family", "Open Sans")

1447 .attr("font-size", "25px")

1448 .attr("fill", "#C2C1C1")

1449

1450 var NodeGroup = svgSection.append("g");

1451

1452 var div_inner = d3.select("#section").append("div")

1453 .attr("class", "tooltip")

1454 .style("opacity", 0);

1455

1456 var right_top_width = $("#right_top").width()

1457 var right_top_height = $("#right_top").height()

1458

1459 var svgright_top = d3.select("#right_top")

1460 .append("svg")

1461 .attr("width", right_top_width*0.95)

1462 .attr("height", (right_top_height*0.95))

1463 .append('g')

1464 .attr('transform', 'translate(' + 0 + ',' + 0 + ')');

1465

1466 svgright_top.append("rect")

1467 .attr("class", "svgright_rect")

435



1468 .attr("x", right_top_width * 0.05)

1469 .attr("y", 0)

1470 .attr("width", right_top_width*0.9)

1471 .attr("height",(right_top_height*0.75))

1472 .attr("rx", 6)

1473 .attr("ry", 6)

1474 .attr("fill", "white")

1475 .attr('stroke', '#C2C1C1')

1476 .attr('stroke-width', '2')

1477

1478 var epoch_right_top = ["0", "10", "20", "30", "40", "50"]

1479

1480 for (var k = 0; k < 6; k++) {

1481 svgright_top.append("text").text(epoch_right_top[k]).attr("x",

(((right_top_width * 0.82) *0.205) * k) + (right_top_width

* 0.085)).attr("y", right_top_height*0.69).attr("

text-anchor", "middle").attr("font-family", "Open Sans").

attr("font-size", "21px").attr("fill", "#C2C1C1")

1482 }

1483

1484 svgright_top.append("line").attr("x1", right_top_width *

0.05).attr("y1", right_top_height*0.6).attr("x2",

right_top_width * 0.95).attr("y2", right_top_height*0.6).

attr("stroke-width", "2px").attr("stroke", "#C2C1C1").style

("stroke-dasharray", ("3, 3"))

1485

1486 for (var k = 0; k < 6; k++) {

1487 svgright_top.append("line").attr("x1", ((right_top_width *

0.162) * k) + (right_top_width * 0.065)).attr("y1",

right_top_height*0.01).attr("x2", ((right_top_width *

0.162) * k) + (right_top_width * 0.065)).attr("y2",

436



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

right_top_height*0.75).attr("stroke-width", "2px").attr("

stroke", "#C2C1C1").style("stroke-dasharray", ("3, 3"))

1488 }

1489

1490 var right_middle_width = $("#right_middle").width()

1491 var right_middle_height = $("#right_middle").height()

1492

1493 var svgright_middle = d3.select("#right_middle")

1494 .append("svg")

1495 .attr("width", right_middle_width*0.95)

1496 .attr("height", (right_middle_height*0.95))

1497

1498 svgright_middle.append("rect")

1499 .attr("class", "svgright_rect")

1500 .attr("x", right_middle_width * 0.05)

1501 .attr("y", 0)

1502 .attr("width", right_middle_width*0.9)

1503 .attr("height",(right_middle_height*0.75))

1504 .attr("rx", 6)

1505 .attr("ry", 6)

1506 .attr("fill", "white")

1507 .attr('stroke', '#C2C1C1')

1508 .attr('stroke-width', '2')

1509

1510 var epoch_right_middle = ["0", "10", "20", "30", "40", "50"]

1511

1512 for (var k = 0; k < 6; k++) {

1513 svgright_middle.append("text").text(epoch_right_middle[k]).

attr("x", (((right_middle_width * 0.82) *0.205) * k) + (

right_middle_width * 0.085)).attr("y", right_middle_height

*0.69).attr("text-anchor", "middle").attr("font-family", "

437



Open Sans").attr("font-size", "21px").attr("fill", "#C2C1C1

")

1514 }

1515

1516 svgright_middle.append("line").attr("x1", right_middle_width

* 0.05).attr("y1", right_middle_height*0.6).attr("x2",

right_middle_width * 0.95).attr("y2", right_middle_height

*0.6).attr("stroke-width", "2px").attr("stroke", "#C2C1C1")

.style("stroke-dasharray", ("3, 3"))

1517

1518 for (var k = 0; k < 6; k++) {

1519 svgright_middle.append("line").attr("x1", ((right_middle_width

* 0.162) * k) + (right_middle_width * 0.065)).attr("y1",

right_middle_height*0.01).attr("x2", ((right_middle_width *

0.162) * k) + (right_middle_width * 0.065)).attr("y2",

right_middle_height*0.75).attr("stroke-width", "2px").attr(

"stroke", "#C2C1C1").style("stroke-dasharray", ("3, 3"))

1520 }

1521

1522 var right_bottom_width = $("#right_bottom").width()

1523 var right_bottom_height = $("#right_bottom").height()

1524

1525 var svgright_bottom = d3.select("#right_bottom")

1526 .append("svg")

1527 .attr("width", right_bottom_width*0.95)

1528 .attr("height", (right_bottom_height*0.95))

1529

1530 svgright_bottom.append("rect")

1531 .attr("class", "svgright_rect")

1532 .attr("x", right_bottom_width * 0.05)

1533 .attr("y", 0)

438



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1534 .attr("width", right_bottom_width*0.9)

1535 .attr("height",(right_bottom_height*0.75))

1536 .attr("rx", 6)

1537 .attr("ry", 6)

1538 .attr("fill", "white")

1539 .attr('stroke', '#C2C1C1')

1540 .attr('stroke-width', '2')

1541

1542 var epoch_right_bottom = ["0", "10", "20", "30", "40", "50"]

1543

1544 for (var k = 0; k < 6; k++) {

1545 svgright_bottom.append("text").text(epoch_right_bottom[k]).

attr("x", (((right_bottom_width * 0.82) *0.205) * k) + (

right_bottom_width * 0.085)).attr("y", right_bottom_height

*0.69).attr("text-anchor", "middle").attr("font-family", "

Open Sans").attr("font-size", "21px").attr("fill", "#C2C1C1

")

1546 }

1547

1548 svgright_bottom.append("line").attr("x1", right_bottom_width

* 0.05).attr("y1", right_bottom_height*0.6).attr("x2",

right_bottom_width * 0.95).attr("y2", right_bottom_height

*0.6).attr("stroke-width", "2px").attr("stroke", "#C2C1C1")

.style("stroke-dasharray", ("3, 3"))

1549

1550 for (var k = 0; k < 6; k++) {

1551 svgright_bottom.append("line").attr("x1", ((right_bottom_width

* 0.1651) * k) + (right_bottom_width * 0.065)).attr("y1",

right_bottom_height*0.01).attr("x2", ((right_bottom_width *

0.1651) * k) + (right_bottom_width * 0.065)).attr("y2",

right_bottom_height*0.75).attr("stroke-width", "2px").attr(

439



"stroke", "#C2C1C1").style("stroke-dasharray", ("3, 3"))

1552 }

1553

1554 var SB_width = $("#section_bottom_right").width()

1555 var SB_height = $("#section_bottom_right").height()

1556

1557 var SB_svg = d3.select("#section_bottom_right")

1558 .append("svg")

1559 .attr("width", SB_width)

1560 .attr("height", SB_height);

1561

1562

1563 var target = actual = 0;

1564 var alpha = 0.2;

1565 var timer = d3.timer(updateTween);

1566 var stepTimer;

1567 var moving = false;

1568 var maxValue = 49;

1569 var trailLength = 10;

1570 var currentEpoch = 0;

1571

1572 var playButton = d3.select("#play-button");

1573

1574 var x = d3.scaleLinear()

1575 .domain([1, 49])

1576 .range([0, SB_width*0.9])

1577 .clamp(true);

1578

1579 var slider = SB_svg.append("g")

1580 .attr("class", "slider")

440



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1581 .attr("transform", "translate(" + SB_width*0.05 + "," +

SB_height/2 + ")");

1582

1583 slider.append("line")

1584 .attr("class", "track")

1585 .attr("x1", x.range()[0])

1586 .attr("x2", x.range()[1])

1587 .select(function() { return this.parentNode.appendChild(

this.cloneNode(true)); })

1588 .attr("class", "track-inset")

1589 .select(function() { return this.parentNode.appendChild(

this.cloneNode(true)); })

1590 .attr("class", "track-overlay")

1591 .call(d3.drag()

1592 .on("start.interrupt", function() { slider.interrupt(); })

1593 .on("start drag", function() {

1594 currentValue = d3.event.x;

1595 update(x.invert(currentValue));

1596 })

1597 );

1598

1599 slider.insert("g", ".track-overlay")

1600 .attr("class", "ticks")

1601 .attr("transform", "translate(0," + 18 + ")")

1602 .selectAll("text")

1603 .data(x.ticks(10))

1604 .enter().append("text")

1605 .attr("x", x)

1606 .attr("text-anchor", "middle")

1607 .text(d => d+" epoch" );

1608

441



1609 const handle = slider.insert("circle", ".track-overlay")

1610 .attr("class", "handle")

1611 .attr("r", 9);

1612

1613 d3.select(window)

1614 .on("keydown", keydowned);

1615

1616 playButton

1617 .on("click", paused)

1618 .each(paused);

1619

1620 function update(d) {

1621 target = d;

1622 moving = true;

1623 timer.restart(updateTween);

1624 drawall();

1625 }

1626

1627 function updateTween() {

1628 let diff = target - actual;

1629 if (Math.abs(diff) < 1e-3) actual = target, timer.stop();

1630 else actual += diff * alpha;

1631 handle.attr("cx", x(actual));

1632 currentEpoch = Math.round(actual)

1633

1634 return currentEpoch

1635

1636 }

1637

1638 function keydowned() {

1639 let currentValue = actual;

442



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1640 if (d3.event.metaKey || d3.event.altKey) return;

1641 switch (d3.event.keyCode) {

1642 case 37: currentValue = Math.max(x.domain()[0], actual -

trailLength); break;

1643 case 39: currentValue = Math.min(x.domain()[1], actual +

trailLength); break;

1644 default: return;

1645 }

1646 update(currentValue);

1647 paused();

1648 }

1649

1650 function paused() {

1651 if (moving) {

1652 slider.interrupt();

1653 clearInterval(stepTimer);

1654 moving = false;

1655 playButton.text("Play");

1656 } else {

1657 if (actual > maxValue) actual = 0;

1658 stepTimer = setInterval(step, 1500);

1659 moving = true;

1660 playButton.text("Pause");

1661 }

1662 }

1663

1664 function step() {

1665 if (actual > maxValue) paused();

1666 else update(actual + trailLength / 10);

1667 }

1668

443



1669 paused();

1670 var functionslist_ey = ['LOC','GOL','EFF','CRT','THM','INS','

AGT','FNS'];

1671 var functionsname_ey = ['Location','Goal','Effector','

Criterion','Theme','Instrument','Agent','Final State'];

1672

1673 var functionslist_eyse = ['SRC','LOC'];

1674 var functionsname_eyse = ['Source','Location'];

1675

1676 var functionslist_lo = ['LOC','DIR','EFF','CRT','INS','FNS'];

1677 var functionsname_lo = ['Location','Direction','Effector','

Criterion','Instrument','Final State'];

1678

1679 function draw_op_function_after(post,list,name,name_kr){

1680 $('#container_leftmiddle').empty();

1681 if (post === "ey"){

1682 for(var i = 0 ; i < list.length; i++){

1683 var color = ""

1684 var currentFunc = list[i].toLowerCase()

1685 if (currentFunc == function_name[0]) {

1686 color = function_color[0]

1687 } else if (currentFunc == function_name[1]) {

1688 color = function_color[1]

1689 } else if (currentFunc == function_name[2]) {

1690 color = function_color[2]

1691 } else if (currentFunc == function_name[3]) {

1692 color = function_color[3]

1693 } else if (currentFunc == function_name[4]) {

1694 color = function_color[4]

1695 } else if (currentFunc == function_name[5]) {

1696 color = function_color[5]

444



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1697 } else if (currentFunc == function_name[6]) {

1698 color = function_color[6]

1699 } else if (currentFunc == function_name[7]) {

1700 color = function_color[7]

1701 } else if (currentFunc == function_name[8]) {

1702 color = function_color[8]

1703 } else if (currentFunc == function_name[9]) {

1704 color = function_color[9]

1705 }

1706 $("#container_leftmiddle").append("<input class='CB_leftmiddle

' type='checkbox' value='"+list[i].toLowerCase()+"' id='

CB_leftmiddle_"+list[i].toLowerCase()+"' /> <label class='

CB_leftmiddle'><svg width='12' height='12' ><rect width=

'11' height='11' rx='2' class='legendrect' style='fill:"+

color+";opacity:0.9;'/></svg> "+list[i]+" ("+name[i]+","+

name_kr[i]+")</label></br>");

1707 }

1708 } else if (post === "eyse"){

1709 for(var i = 0 ; i < list.length; i++){

1710 var color = ""

1711 var currentFunc = list[i].toLowerCase()

1712 if (currentFunc == function_name[0]) {

1713 color = function_color[0]

1714 } else if (currentFunc == function_name[1]) {

1715 color = function_color[1]

1716 } else if (currentFunc == function_name[2]) {

1717 color = function_color[2]

1718 } else if (currentFunc == function_name[3]) {

1719 color = function_color[3]

1720 } else if (currentFunc == function_name[4]) {

1721 color = function_color[4]

445



1722 } else if (currentFunc == function_name[5]) {

1723 color = function_color[5]

1724 } else if (currentFunc == function_name[6]) {

1725 color = function_color[6]

1726 } else if (currentFunc == function_name[7]) {

1727 color = function_color[7]

1728 } else if (currentFunc == function_name[8]) {

1729 color = function_color[8]

1730 } else if (currentFunc == function_name[9]) {

1731 color = function_color[9]

1732 }

1733 $("#container_leftmiddle").append("<input class='CB_leftmiddle

' type='checkbox' value='"+list[i].toLowerCase()+"' id='

CB_leftmiddle_"+list[i].toLowerCase()+"' /> <label class='

CB_leftmiddle'><svg width='12' height='12'><rect width='11'

height='11' rx='2' class='legendrect' style='fill:"+color+

";opacity:0.9;'/></svg> "+list[i]+" ("+name[i]+","+name_kr[

i]+")</label></br>");

1734 }

1735 } else if (post === "(u)lo"){

1736 for(var i = 0 ; i < list.length; i++){

1737 var color = ""

1738 var currentFunc = list[i].toLowerCase()

1739 if (currentFunc == function_name[0]) {

1740 color = function_color[0]

1741 } else if (currentFunc == function_name[1]) {

1742 color = function_color[1]

1743 } else if (currentFunc == function_name[2]) {

1744 color = function_color[2]

1745 } else if (currentFunc == function_name[3]) {

1746 color = function_color[3]

446



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1747 } else if (currentFunc == function_name[4]) {

1748 color = function_color[4]

1749 } else if (currentFunc == function_name[5]) {

1750 color = function_color[5]

1751 } else if (currentFunc == function_name[6]) {

1752 color = function_color[6]

1753 } else if (currentFunc == function_name[7]) {

1754 color = function_color[7]

1755 } else if (currentFunc == function_name[8]) {

1756 color = function_color[8]

1757 } else if (currentFunc == function_name[9]) {

1758 color = function_color[9]

1759 }

1760 $("#container_leftmiddle").append("<input class='CB_leftmiddle

' type='checkbox' value='"+list[i].toLowerCase()+"' id='

CB_leftmiddle_"+list[i].toLowerCase()+"' /> <label class='

CB_leftmiddle'><svg width='12' height='12'><rect width='11'

height='11' rx='2' class='legendrect' style='fill:"+color+

";opacity:0.9;'/></svg> "+list[i]+" ("+name[i]+","+name_kr[

i]+")</label></br>");

1761 }

1762 }

1763 }

1764

1765 function op_function_change(){

1766 var selected_postposition = $( "#op_postposition" ).val();

1767 if (selected_postposition === "ey"){

1768 draw_op_function_after("ey",functionslist_ey,functionsname_ey,

functionsname_kr_ey)

1769 draw_op_index_after("ey")

1770

447



1771 } else if (selected_postposition === "eyse"){

1772 draw_op_function_after("eyse",functionslist_eyse,

functionsname_eyse,functionsname_kr_eyse)

1773 draw_op_index_after("eyse")

1774 } else if (selected_postposition === "(u)lo"){

1775 draw_op_function_after("(u)lo",functionslist_lo,

functionsname_lo,functionsname_kr_lo)

1776 draw_op_index_after("(u)lo")

1777 }

1778

1779 drawall();

1780 }

1781

1782 function draw_op_index_after(post){

1783 $('#container_leftbottom').empty();

1784 if (post === "ey"){

1785 for(var i = 0 ; i < 467; i++){

1786 $("#container_leftbottom").append("<input class='CB_leftbottom

' type='checkbox' value='index"+i+"' id='CB_leftbottom_"+i+

"' /> <label class='CB_leftbottom'>index_"+i+"</label></br>

");

1787 }

1788 } else if (post === "eyse"){

1789 for(var i = 0 ; i < 484; i++){

1790 $("#container_leftbottom").append("<input class='CB_leftbottom

' type='checkbox' value='index"+i+"' id='CB_leftbottom_"+i+

"' /> <label class='CB_leftbottom'>index_"+i+"</label></br>

");

1791 }

1792 } else if (post === "(u)lo"){

1793 for(var i = 0 ; i < 467; i++){

448



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1794 $("#container_leftbottom").append("<input class='CB_leftbottom

' type='checkbox' value='index"+i+"' id='CB_leftbottom_"+i+

"' /> <label class='CB_leftbottom'>index_"+i+"</label></br>

");

1795 }

1796 }

1797 }

1798

1799 function functioncheckbox() {

1800

1801 var data_checkbox = []

1802

1803 var selected_postposition = $( "#op_postposition" ).val();

1804 if (selected_postposition === "ey"){

1805 for(var i = 0; i < functionslist_ey.length; i++){

1806 if(checkedeachValue('CB_leftmiddle_'+functionslist_ey[i].

toLowerCase())!=='null'){

1807 data_checkbox.push(checkedeachValue('CB_leftmiddle_'+

functionslist_ey[i].toLowerCase()));

1808 }

1809 }

1810

1811 } else if (selected_postposition === "eyse"){

1812 for(var i = 0; i < functionslist_eyse.length; i++){

1813 if(checkedeachValue('CB_leftmiddle_'+functionslist_eyse[i].

toLowerCase())!=='null'){

1814 data_checkbox.push(checkedeachValue('CB_leftmiddle_'+

functionslist_eyse[i].toLowerCase()));

1815 }

1816 }

1817 } else if (selected_postposition === "(u)lo"){

449



1818 for(var i = 0; i < functionslist_lo.length; i++){

1819 if(checkedeachValue('CB_leftmiddle_'+functionslist_lo[i].

toLowerCase())!=='null'){

1820 data_checkbox.push(checkedeachValue('CB_leftmiddle_'+

functionslist_lo[i].toLowerCase()));

1821 }

1822 }

1823 }

1824

1825 return data_checkbox;

1826 }

1827

1828 function indexcheckbox() {

1829

1830 var data_checkbox = []

1831

1832 var selected_postposition = $( "#op_postposition" ).val();

1833 if (selected_postposition === "ey"){

1834 for(var i = 0 ; i < 467; i++){

1835 if(checkedeachValue('CB_leftbottom_'+i)!=='null'){

1836 data_checkbox.push(checkedeachValue('CB_leftbottom_'+i));

1837 }

1838 }

1839

1840 } else if (selected_postposition === "eyse"){

1841 for(var i = 0 ; i < 484; i++){

1842 if(checkedeachValue('CB_leftbottom_'+i)!=='null'){

1843 data_checkbox.push(checkedeachValue('CB_leftbottom_'+i));

1844 }

1845 }

1846 } else if (selected_postposition === "(u)lo"){

450



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1847 for(var i = 0 ; i < 467; i++){

1848 if(checkedeachValue('CB_leftbottom_'+i)!=='null'){

1849 data_checkbox.push(checkedeachValue('CB_leftbottom_'+i));

1850 }

1851 }

1852 }

1853

1854 return data_checkbox;

1855 }

1856

1857 function checkedeachValue(checkeddata){

1858 var value;

1859 var checkedValue = document.querySelector('#'+checkeddata+':

checked');

1860 if(checkedValue == null){

1861 value = "null";

1862 } else {

1863 value = checkedValue.value;

1864 }

1865 return value;

1866 }

1867

1868 op_function_change()

1869

1870 function right_top_draw(){

1871 var selected_postposition = $( "#op_postposition" ).val();

1872

1873 EpochNow = updateTween()

1874

1875 EpochNoww = EpochNow

1876

451



1877 svgright_top.selectAll(".righttoppath").remove();

1878

1879 var dataTotal = []

1880

1881 for (var i = 0; i < Accuracy_info.length ; i++) {

1882 if ((Accuracy_info[i].postposition === selected_postposition))

{

1883 for(var j = 0; j < Accuracy_info[i].accuracy.length ; j++){

1884 if(j<=EpochNoww){

1885 dataTotal.push(Accuracy_info[i].accuracy[j])

1886 }

1887 }

1888 }

1889 }

1890

1891 funcList = []

1892

1893 for (var key in dataTotal[0]){

1894 if((key === 'total')||(key === 'loss')){

1895 funcList.push(key)

1896 } else {

1897 continue;

1898 }

1899 }

1900

1901 var final_data = []

1902

1903 for (var i = 0; i < funcList.length ; i++) {

1904 currentFunc = funcList[i]

1905 var dataT = {}

1906 var dataY = [];

452



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1907 var currentaccuracy = 0

1908 for (var j = 0; j < dataTotal.length ; j++) {

1909 dataY.push(dataTotal[j][funcList[i]])

1910 currentaccuracy = dataTotal[j][funcList[i]]

1911 }

1912 dataT['y'] = dataY

1913 var dataX = [];

1914 for (var j = 0; j < 50 ; j++) {

1915 dataX.push(j)

1916 }

1917 dataT['x'] = dataX

1918

1919 var rearrangedData = dataT.x.map(function(d,i) {

1920 return {x:d,y:dataT.y[i]};

1921 })

1922

1923 var re_data = {}

1924 re_data['name'] = currentFunc

1925 re_data['show'] = true

1926 re_data['currentLoss'] = currentaccuracy

1927 re_data['history'] = rearrangedData

1928

1929 if (currentFunc == 'total') {

1930 re_data['color'] = "#49441F"

1931 } else if (currentFunc == 'loss') {

1932 re_data['color'] = "#003366"

1933 }

1934

1935 final_data.push(re_data)

1936 }

1937

453



1938 var right_top_x = d3.scale.linear().domain([0,50]).range([

right_top_width*0.07,right_top_width*0.9])

1939 var right_top_y = d3.scale.linear().domain([-0.25,1.5]).range

([right_top_height*0.7,0])

1940

1941 var line = d3.svg.line()

1942 .x(function(d){ return right_top_x(d.x)})

1943 .y(function(d){return right_top_y(d.y)})

1944 .interpolate("linear");

1945

1946 const tooltip_top = d3.select('#tooltip_top');

1947 const tooltipLine_top = svgright_top.append('line');

1948

1949 svgright_top.selectAll()

1950 .data(final_data).enter()

1951 .append('path')

1952 .attr('class','righttoppath')

1953 .attr('fill', 'none')

1954 .attr('stroke', d => d.color)

1955 .attr('stroke-width', 2)

1956 .datum(d => d.history)

1957 .attr('d', line)

1958 .attr("opacity",0.7);

1959

1960 svgright_top.selectAll()

1961 .data(final_data).enter()

1962 .append('text')

1963 .html(d => d.name)

1964 .attr('fill', d => d.color)

1965 .attr('alignment-baseline', 'middle')

1966 .attr('x', right_top_width)

454



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

1967 .attr('dx', '.5em')

1968 .attr('y', d => right_top_y(d.currentLoss));

1969

1970 tipBox = svgright_top.append('rect')

1971 .attr('width', right_top_width)

1972 .attr('height', right_top_height)

1973 .attr('opacity', 0)

1974 .on('mousemove', drawTooltip)

1975 .on('mouseout', removeTooltip);

1976

1977

1978 function removeTooltip() {

1979 if (tooltip_top) tooltip_top.style('display', 'none');

1980 if (tooltipLine_top) tooltipLine_top.attr('stroke', 'none');

1981 }

1982

1983 function drawTooltip() {

1984 const x = Math.floor((right_top_x.invert(d3.mouse(tipBox.node

())[0])+0.5));

1985

1986 final_data.sort((a, b) => {

1987 return b.history.find(h => h.x == x).y - a.history.find(h =>

h.x == x).y;

1988 })

1989

1990 tooltipLine_top.attr('stroke', 'black')

1991 .attr('x1', right_top_x(x)-1)

1992 .attr('x2', right_top_x(x)-1)

1993 .attr('y1', 0)

1994 .attr('y2', right_top_height)

1995 .attr('opacity',0.7);

455



1996

1997 tooltip_top.html(x+1)

1998 .style('display', 'block')

1999 .style('right', right_top_width*0.07+"px")

2000 .style('top', right_top_height*0.28+"px")

2001 .style('opacity',0.7)

2002 .selectAll()

2003 .data(final_data).enter()

2004 .append('div')

2005 .style('color', d => d.color)

2006 .html(d => d.name + ': ' + d.history.find(h => h.x == x).y);

2007 }

2008 }

2009

2010 function right_middle_draw(){

2011 var selected_postposition = $( "#op_postposition" ).val();

2012

2013 EpochNow = updateTween()

2014

2015 EpochNoww = EpochNow

2016

2017 svgright_middle.selectAll(".rightmiddlepath").remove();

2018

2019 var dataTotal = []

2020

2021 for (var i = 0; i < Accuracy_info.length ; i++) {

2022 if ((Accuracy_info[i].postposition === selected_postposition))

{

2023 for(var j = 0; j < Accuracy_info[i].accuracy.length ; j++){

2024 if(j<=EpochNoww){

2025 dataTotal.push(Accuracy_info[i].accuracy[j])

456



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

2026 }

2027 }

2028 }

2029 }

2030

2031 funcList = []

2032

2033 for (var key in dataTotal[0]){

2034 if((key === 'epoch')||(key === 'total')||(key === 'loss')||(

key === 'correlation')){

2035 continue;

2036 } else {

2037 funcList.push(key)

2038 }

2039

2040 }

2041

2042 var final_data = []

2043

2044 for (var i = 0; i < funcList.length ; i++) {

2045 currentFunc = funcList[i]

2046 var dataT = {}

2047 var dataY = [];

2048 var currentaccuracy = 0

2049 for (var j = 0; j < dataTotal.length ; j++) {

2050 dataY.push(dataTotal[j][funcList[i]])

2051 currentaccuracy = dataTotal[j][funcList[i]]

2052 }

2053 dataT['y'] = dataY

2054 var dataX = [];

2055 for (var j = 0; j < 50 ; j++) {

457



2056 dataX.push(j)

2057 }

2058 dataT['x'] = dataX

2059

2060 var rearrangedData = dataT.x.map(function(d,i) {

2061 return {x:d,y:dataT.y[i]};

2062 })

2063

2064 var re_data = {}

2065 re_data['name'] = currentFunc

2066 re_data['show'] = true

2067 re_data['currentLoss'] = currentaccuracy

2068 re_data['history'] = rearrangedData

2069

2070 if (currentFunc == function_name[0]) {

2071 re_data['color'] = function_color[0]

2072 } else if (currentFunc == function_name[1]) {

2073 re_data['color'] = function_color[1]

2074 } else if (currentFunc == function_name[2]) {

2075 re_data['color'] = function_color[2]

2076 } else if (currentFunc == function_name[3]) {

2077 re_data['color'] = function_color[3]

2078 } else if (currentFunc == function_name[4]) {

2079 re_data['color'] = function_color[4]

2080 } else if (currentFunc == function_name[5]) {

2081 re_data['color'] = function_color[5]

2082 } else if (currentFunc == function_name[6]) {

2083 re_data['color'] = function_color[6]

2084 } else if (currentFunc == function_name[7]) {

2085 re_data['color'] = function_color[7]

2086 } else if (currentFunc == function_name[8]) {

458



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

2087 re_data['color'] = function_color[8]

2088 } else if (currentFunc == function_name[9]) {

2089 re_data['color'] = function_color[9]

2090 }

2091

2092 final_data.push(re_data)

2093

2094 }

2095

2096 var right_middle_x = d3.scale.linear().domain([0,50]).range([

right_middle_width*0.07,right_middle_width*0.9])

2097 var right_middle_y = d3.scale.linear().domain([-0.25,1.1]).

range([right_middle_height*0.72,0])

2098

2099 var line = d3.svg.line()

2100 .x(function(d){ return right_middle_x(d.x)})

2101 .y(function(d){return right_middle_y(d.y)})

2102 .interpolate("linear");

2103

2104 const tooltip_middle = d3.select('#tooltip_middle');

2105 const tooltipLine_middle = svgright_middle.append('line');

2106

2107 svgright_middle.selectAll()

2108 .data(final_data).enter()

2109 .append('path')

2110 .attr('class','rightmiddlepath')

2111 .attr('fill', 'none')

2112 .attr('stroke', d => d.color)

2113 .attr('stroke-width', 2)

2114 .datum(d => d.history)

2115 .attr('d', line)

459



2116 .attr("opacity",0.7);

2117

2118 svgright_middle.selectAll()

2119 .data(final_data).enter()

2120 .append('text')

2121 .html(d => d.name)

2122 .attr('fill', d => d.color)

2123 .attr('alignment-baseline', 'middle')

2124 .attr('x', right_middle_width)

2125 .attr('dx', '.5em')

2126 .attr('y', d => right_middle_y(d.currentLoss));

2127

2128 tipBox = svgright_middle.append('rect')

2129 .attr('width', right_middle_width)

2130 .attr('height', right_middle_height)

2131 .attr('opacity', 0)

2132 .on('mousemove', drawTooltip)

2133 .on('mouseout', removeTooltip);

2134

2135 function removeTooltip() {

2136 if (tooltip_middle) tooltip_middle.style('display', 'none');

2137 if (tooltipLine_middle) tooltipLine_middle.attr('stroke', '

none');

2138 }

2139

2140 function drawTooltip() {

2141 const x = Math.floor((right_middle_x.invert(d3.mouse(

tipBox.node())[0])+0.5));

2142

2143 final_data.sort((a, b) => {

460



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

2144 return b.history.find(h => h.x == x).y - a.history.find(h =>

h.x == x).y;

2145 })

2146

2147 tooltipLine_middle.attr('stroke', 'black')

2148 .attr('x1', right_middle_x(x)-1)

2149 .attr('x2', right_middle_x(x)-1)

2150 .attr('y1', 0)

2151 .attr('y2', right_middle_height)

2152 .attr('opacity',0.7);

2153

2154 tooltip_middle.html(x+1)

2155 .style('display', 'block')

2156 .style('right', right_top_width*0.07+"px")

2157 .style('top', right_middle_height*0.28+"px")

2158 .style('opacity',0.7)

2159 .selectAll()

2160 .data(final_data).enter()

2161 .append('div')

2162 .style('color', d => d.color)

2163 .html(d => d.name + ': ' + d.history.find(h => h.x == x).y);

2164 }

2165 }

2166

2167 function right_bottom_draw(){

2168 var selected_postposition = $( "#op_postposition" ).val();

2169

2170 EpochNow = updateTween()

2171

2172 EpochNoww = EpochNow

2173

461



2174 svgright_bottom.selectAll(".rightbottom_bar").remove();

2175 svgright_bottom.selectAll(".rightbottom_text").remove();

2176

2177 var dataTotal = [0]

2178

2179 for (var i = 0; i < Density_info.length ; i++) {

2180 if ((Density_info[i].postposition === selected_postposition))

{

2181 for(var j = 0; j < Density_info[i].cluster.length ; j++){

2182 if(j<=EpochNoww){

2183 dataTotal.push(Density_info[i].cluster[j].clusterNumber)

2184 }

2185 }

2186 }

2187 }

2188

2189 yScaleMax = 0;

2190 if(selected_postposition==="ey"){

2191 yScaleMax = 7;

2192 } else if (selected_postposition==="eyse"){

2193 yScaleMax = 3;

2194 } else {

2195 yScaleMax = 7;

2196 }

2197

2198 var right_bottom_x = d3.scale.linear()

2199 .domain([0,50])

2200 .range([right_bottom_width*0.05,right_bottom_width*0.88], 0.1)

;

2201

2202 var right_bottom_y = d3.scale.linear()

462



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

2203 .domain([0, yScaleMax])

2204 .range([0,right_bottom_height*0.62]);

2205

2206 svgright_bottom.selectAll("rect")

2207 .data(dataTotal)

2208 .enter()

2209 .append("rect")

2210 .attr("class","rightbottom_bar")

2211 .attr("x", function(d, i) {

2212 return right_bottom_x(i);

2213 })

2214 .attr("y", function(d) {

2215 return (right_bottom_height*0.6) - right_bottom_y(d);

2216 })

2217 .attr("width", right_bottom_width*0.015)

2218 .attr("height", function(d) {

2219 return right_bottom_y(d);

2220 })

2221 .attr("fill", function(d) {

2222 return "#666666";

2223 })

2224 .on("mouseover", function(d, i) {

2225

2226 d3.select("#tooltip_bottom")

2227 .style("right", right_bottom_width*0.07 + "px")

2228 .style("top", right_bottom_height*0.28 + "px")

2229 .html("<p><strong>Selected epoch: </strong>"+i+"<br><strong>

Cluster number: </strong>"+d+"</p>")

2230

2231 d3.select("#tooltip_bottom").classed("hidden", false);

2232

463



2233 })

2234 .on("mouseout", function() {

2235

2236 d3.select("#tooltip_bottom").classed("hidden", true);

2237

2238 });

2239

2240 svgright_bottom.append("text")

2241 .attr("class","rightbottom_text")

2242 .text("Current cluster number: "+dataTotal[EpochNow+1])

2243 .attr("x", right_bottom_width*0.08)

2244 .attr("y", right_bottom_height*0.1)

2245 .attr("text-anchor", "start")

2246 .attr("font-family", "Open Sans")

2247 .attr("font-size", "20px")

2248 .attr("fill", "#666666")

2249 }

2250

2251 firstdrawdata();

2252

2253 d3.selectAll("#op_postposition").on("change",

op_function_change);

2254 d3.selectAll("#container_leftmiddle").on("change", drawall);

2255 d3.selectAll("#container_leftbottom").on("change", drawall);

2256

2257 function drawall(){

2258

2259 var selected_postposition = $( "#op_postposition" ).val();

2260

2261 var functions = functioncheckbox();

2262 var indexs = indexcheckbox();

464



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

2263 changedrawdata(selected_postposition,functions,indexs)

2264

2265 }

2266

2267 function firstdrawdata() {

2268 var data = {};

2269 for (var i = 0; i < Map_info.length ; i++) {

2270 if ((Map_info[i].postposition === 'ey') && (Map_info[i].epoch

=== 'epoch0')) {

2271 var innerArray = [];

2272 for(var j = 0; j < Sentence_info.length ; j++){

2273 if (Sentence_info[j].postposition === 'ey') {

2274 for(var k = 0; k < Map_info[i].sentences.length ; k++){

2275 var sentenceDic = {}

2276 sentenceDic["index"] = Sentence_info[j].sentences[k].index

2277 sentenceDic["function"] = Sentence_info[j].sentences[k].

function

2278 sentenceDic["sentence"] = Sentence_info[j].sentences[k].

sentence

2279 sentenceDic["sentence_pos"] = Sentence_info[j].sentences[k].

sentence_pos

2280 sentenceDic["X"] = Map_info[i].sentences[k].X

2281 sentenceDic["Y"] = Map_info[i].sentences[k].Y

2282 sentenceDic["opacity_value"] = 0.7

2283 innerArray.push(sentenceDic)

2284 }

2285 }

2286 }

2287 data["postposition"] = Map_info[i].postposition

2288 data["epoch"] = Map_info[i].epoch

2289 data["sentences"] = innerArray

465



2290 }

2291 }

2292

2293 var w = sectionWidth;

2294 var h = sectionHeight;

2295 var padding = (sectionHeight*0.12);

2296

2297 var xScale = d3.scale.linear()

2298 .domain([d3.min(data.sentences, function(d) { return d.Y; }),

d3.max(data.sentences, function(d) { return d.X; })])

2299 .range([0+padding, w-padding]);

2300

2301 var yScale = d3.scale.linear()

2302 .domain([d3.min(data.sentences, function(d) { return d.Y; }),

d3.max(data.sentences, function(d) { return d.Y; })])

2303 .range([h-padding, 0+padding]);

2304

2305 NodeGroup.selectAll(".nodedot")

2306 .data(data.sentences)

2307 .enter()

2308 .append("circle")

2309 .attr("class", "nodedot")

2310 .attr("id", function (d) {

2311 return d.index

2312 })

2313 .attr("cx", function (d) {

2314 return xScale(d.X)

2315 })

2316 .attr("cy", function (d) {

2317 return yScale(d.Y)

2318 })

466



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

2319 .attr("r", 3)

2320 .attr("fill", function (d) {

2321 if (d.function == function_name[0]) {

2322 return function_color[0]

2323 } else if (d.function == function_name[1]) {

2324 return function_color[1]

2325 } else if (d.function == function_name[2]) {

2326 return function_color[2]

2327 } else if (d.function == function_name[3]) {

2328 return function_color[3]

2329 } else if (d.function == function_name[4]) {

2330 return function_color[4]

2331 } else if (d.function == function_name[5]) {

2332 return function_color[5]

2333 } else if (d.function == function_name[6]) {

2334 return function_color[6]

2335 } else if (d.function == function_name[7]) {

2336 return function_color[7]

2337 } else if (d.function == function_name[8]) {

2338 return function_color[8]

2339 } else if (d.function == function_name[9]) {

2340 return function_color[9]

2341 }

2342 })

2343 .attr("stroke", "black")

2344 .attr("stroke-width", "1px")

2345 .attr("opacity", function (d) {

2346 return d.opacity_value

2347 })

2348 .style("cursor", "help")

2349 .on("mouseover", function (d) {

467



2350 d3.select(this)

2351 .attr("stroke", "black")

2352 .attr("stroke-width", "1px")

2353 .attr("opacity", 1)

2354 .attr("fill","#FF0000")

2355 })

2356 .on("mouseout", function (d) {

2357 d3.select(this)

2358 .attr("stroke", "black")

2359 .attr("stroke-width", "1px")

2360 .attr("opacity", function (d) {

2361 return d.opacity_value

2362 })

2363 .attr("fill", function (d) {

2364 if (d.function == function_name[0]) {

2365 return function_color[0]

2366 } else if (d.function == function_name[1]) {

2367 return function_color[1]

2368 } else if (d.function == function_name[2]) {

2369 return function_color[2]

2370 } else if (d.function == function_name[3]) {

2371 return function_color[3]

2372 } else if (d.function == function_name[4]) {

2373 return function_color[4]

2374 } else if (d.function == function_name[5]) {

2375 return function_color[5]

2376 } else if (d.function == function_name[6]) {

2377 return function_color[6]

2378 } else if (d.function == function_name[7]) {

2379 return function_color[7]

2380 } else if (d.function == function_name[8]) {

468



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

2381 return function_color[8]

2382 } else if (d.function == function_name[9]) {

2383 return function_color[9]

2384 }

2385 });

2386 })

2387 .on("mouseenter", function (d) {

2388 div_inner.transition()

2389 .duration(200)

2390 .style("opacity", 0.85);

2391 div_inner.html("<strong>Selected sentence</strong><br/><h5>

Index : "+d.index + "<h5/><h5>Function : " + d.function +

"<h5/><h5>Sentence : " + d.sentence+ "<h5/><h5>SentencePOS

: " + d.sentence_pos+ "<h5/>")

2392 .style("left", "20px")

2393 .style("top", sectionHeight*0.07+"px");

2394 })

2395 .on("mouseleave", function () {

2396 div_inner.transition()

2397 .duration(500)

2398 .style("opacity", 0);

2399 });

2400 }

2401

2402 function changedrawdata(selected_postposition,functionarray,

indexarray) {

2403 if ((selected_postposition === 'ey') || (selected_postposition

=== '(u)lo')){

2404 for(var i = 467; i < 484 ; i++){

2405 svgSection.selectAll("#index"+i).remove();

2406 }

469



2407 }

2408

2409 EpochNow = updateTween()

2410

2411 right_top_draw();

2412 right_middle_draw();

2413 right_bottom_draw();

2414

2415 var textlabel = div_epoch.selectAll(".textlabel")

2416 textlabel.enter()

2417 .append("text")

2418 .attr("class", "label")

2419 .text((EpochNow+1)+" Epoch")

2420 textlabel.transition()

2421 .duration(10)

2422 .text((EpochNow+1)+" Epoch")

2423 textlabel.exit().remove();

2424

2425 var data = {};

2426 for (var i = 0; i < Map_info.length ; i++) {

2427 if ((Map_info[i].postposition === selected_postposition) && (

Map_info[i].epoch === 'epoch'+EpochNow)) {

2428 var innerArray = [];

2429 for(var j = 0; j < Sentence_info.length ; j++){

2430 if (Sentence_info[j].postposition === selected_postposition &&

(Map_info[i].epoch === 'epoch'+EpochNow)) {

2431 for(var k = 0; k < Map_info[i].sentences.length ; k++){

2432 var sentenceDic = {}

2433 sentenceDic["index"] = Sentence_info[j].sentences[k].index

2434 sentenceDic["function"] = Sentence_info[j].sentences[k].

function

470



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

2435 sentenceDic["sentence"] = Sentence_info[j].sentences[k].

sentence

2436 sentenceDic["sentence_pos"] = Sentence_info[j].sentences[k].

sentence_pos

2437 sentenceDic["X"] = Map_info[i].sentences[k].X

2438 sentenceDic["Y"] = Map_info[i].sentences[k].Y

2439 if((functionarray.length > 0 == true)&&(indexarray.length > 0

== true)){

2440

2441 var checked = false;

2442 for(var q = 0; q < functionarray.length ; q++){

2443 if(Sentence_info[j].sentences[k].function == functionarray[q])

{

2444 checked = true;

2445 }

2446 }

2447

2448 if(checked == true){

2449 var ichecked = false;

2450 for(var t = 0; t < indexarray.length ; t++){

2451 if(Sentence_info[j].sentences[k].index == indexarray[t]){

2452 ichecked = true;

2453 }

2454 }

2455 if(ichecked == true){

2456 sentenceDic["opacity_value"] = 0.9

2457 } else {

2458 sentenceDic["opacity_value"] = 0.2

2459 }

2460 } else {

2461 sentenceDic["opacity_value"] = 0.2

471



2462 }

2463 } else if((functionarray.length > 0 == false)&&(

indexarray.length > 0 == true)){

2464 var checked = false;

2465 for(var q = 0; q < indexarray.length ; q++){

2466 if(Sentence_info[j].sentences[k].index == indexarray[q]){

2467 checked = true;

2468 }

2469 }

2470 if(checked == true){

2471 sentenceDic["opacity_value"] = 0.9

2472 } else {

2473 sentenceDic["opacity_value"] = 0.2

2474 }

2475 } else if((functionarray.length > 0 == true)&&(

indexarray.length > 0 == false)){

2476 var checked = false;

2477 for(var q = 0; q < functionarray.length ; q++){

2478 if(Sentence_info[j].sentences[k].function == functionarray[q])

{

2479 checked = true;

2480 }

2481 }

2482 if(checked == true){

2483 sentenceDic["opacity_value"] = 0.9

2484 } else {

2485 sentenceDic["opacity_value"] = 0.2

2486 }

2487 } else {

2488 sentenceDic["opacity_value"] = 0.7

2489 }

472



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

2490 innerArray.push(sentenceDic)

2491 }

2492 }

2493 }

2494 data["postposition"] = Map_info[i].postposition

2495 data["epoch"] = Map_info[i].epoch

2496 data["sentences"] = innerArray

2497 }

2498 }

2499

2500 currentPost = ''

2501

2502 if (selected_postposition === 'ey') {

2503 currentPost = 'Ey'

2504 } else if (selected_postposition === 'eyse') {

2505 currentPost = 'Eyse'

2506 } else if (selected_postposition === '(u)lo') {

2507 currentPost = 'Lo'

2508 }

2509

2510 LeftsvgSection.selectAll(".PNG").remove();

2511

2512 var imgs = LeftsvgSection.append("image")

2513 .attr("class", "PNG")

2514 .attr("xlink:href", "https://seongmin-mun.github.io/

VisualSystem/Major/PostBERT.ko/images/densityClusterPNG_r/"

+currentPost+"_tSNE_epoch_"+EpochNow+".png")

2515 .attr("x", LeftsectionWidth*0.05)

2516 .attr("y", 0)

2517 .attr('width', LeftsectionWidth*0.9)

2518 .attr('height', LeftsectionWidth*0.9);

473



2519

2520 var w = sectionWidth;

2521 var h = sectionHeight;

2522 var padding = (sectionHeight*0.12);

2523

2524 var xScale = d3.scale.linear()

2525 .domain([d3.min(data.sentences, function(d) { return d.Y; }),

d3.max(data.sentences, function(d) { return d.X; })])

2526 .range([0+padding, w-padding]);

2527

2528 var yScale = d3.scale.linear()

2529 .domain([d3.min(data.sentences, function(d) { return d.Y; }),

d3.max(data.sentences, function(d) { return d.Y; })])

2530 .range([h-padding, 0+padding]);

2531

2532 var circle = NodeGroup.selectAll(".nodedot")

2533 .data(data.sentences);

2534

2535 circle.enter()

2536 .append("circle")

2537 .attr("class", "nodedot")

2538 .attr("id", function (d) {

2539 return d.index

2540 })

2541 .attr("cx", function (d) {

2542 return xScale(d.X)

2543 })

2544 .attr("cy", function (d) {

2545 return yScale(d.Y)

2546 })

2547 .attr("r", 3)

474



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

2548 .attr("fill", function (d) {

2549 if (d.function == function_name[0]) {

2550 return function_color[0]

2551 } else if (d.function == function_name[1]) {

2552 return function_color[1]

2553 } else if (d.function == function_name[2]) {

2554 return function_color[2]

2555 } else if (d.function == function_name[3]) {

2556 return function_color[3]

2557 } else if (d.function == function_name[4]) {

2558 return function_color[4]

2559 } else if (d.function == function_name[5]) {

2560 return function_color[5]

2561 } else if (d.function == function_name[6]) {

2562 return function_color[6]

2563 } else if (d.function == function_name[7]) {

2564 return function_color[7]

2565 } else if (d.function == function_name[8]) {

2566 return function_color[8]

2567 } else if (d.function == function_name[9]) {

2568 return function_color[9]

2569 }

2570 })

2571 .attr("stroke", "black")

2572 .attr("stroke-width", "1px")

2573 .attr("opacity", function (d) {

2574 return d.opacity_value

2575 })

2576 .style("cursor", "help")

2577 .on("mouseover", function (d) {

2578 d3.select(this)

475



2579 .attr("stroke", "black")

2580 .attr("stroke-width", "1px")

2581 .attr("opacity", 1)

2582 .attr("fill","#FF0000")

2583 })

2584 .on("mouseout", function (d) {

2585 d3.select(this)

2586 .attr("stroke", "black")

2587 .attr("stroke-width", "1px")

2588 .attr("opacity", function (d) {

2589 return d.opacity_value

2590 })

2591 .attr("fill", function (d) {

2592 if (d.function == function_name[0]) {

2593 return function_color[0]

2594 } else if (d.function == function_name[1]) {

2595 return function_color[1]

2596 } else if (d.function == function_name[2]) {

2597 return function_color[2]

2598 } else if (d.function == function_name[3]) {

2599 return function_color[3]

2600 } else if (d.function == function_name[4]) {

2601 return function_color[4]

2602 } else if (d.function == function_name[5]) {

2603 return function_color[5]

2604 } else if (d.function == function_name[6]) {

2605 return function_color[6]

2606 } else if (d.function == function_name[7]) {

2607 return function_color[7]

2608 } else if (d.function == function_name[8]) {

2609 return function_color[8]

476



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

2610 } else if (d.function == function_name[9]) {

2611 return function_color[9]

2612 }

2613 });

2614 })

2615 .on("mouseenter", function (d) {

2616 div_inner.transition()

2617 .duration(200)

2618 .style("opacity", 0.85);

2619 div_inner.html("<strong>Selected sentence</strong><br/><h5>

Index : "+d.index + "<h5/><h5>Function : " + d.function +

"<h5/><h5>Sentence : " + d.sentence+ "<h5/><h5>SentencePOS

: " + d.sentence_pos+ "<h5/>")

2620 .style("left", "20px")

2621 .style("top", sectionHeight*0.07+"px");

2622 })

2623 .on("mouseleave", function () {

2624 div_inner.transition()

2625 .duration(500)

2626 .style("opacity", 0);

2627 })

2628

2629 circle.transition()

2630 .duration(2000)

2631 .attr("cx", function (d) {

2632 return xScale(d.X)

2633 })

2634 .attr("cy", function (d) {

2635 return yScale(d.Y)

2636 })

2637 .attr("r", 3)

477



2638 .attr("fill", function (d) {

2639 if (d.function == function_name[0]) {

2640 return function_color[0]

2641 } else if (d.function == function_name[1]) {

2642 return function_color[1]

2643 } else if (d.function == function_name[2]) {

2644 return function_color[2]

2645 } else if (d.function == function_name[3]) {

2646 return function_color[3]

2647 } else if (d.function == function_name[4]) {

2648 return function_color[4]

2649 } else if (d.function == function_name[5]) {

2650 return function_color[5]

2651 } else if (d.function == function_name[6]) {

2652 return function_color[6]

2653 } else if (d.function == function_name[7]) {

2654 return function_color[7]

2655 } else if (d.function == function_name[8]) {

2656 return function_color[8]

2657 } else if (d.function == function_name[9]) {

2658 return function_color[9]

2659 }

2660 })

2661 .attr("stroke", "black")

2662 .attr("stroke-width", "1px")

2663 .attr("opacity", function (d) {

2664 return d.opacity_value

2665 })

2666 .style("cursor", "help")

2667 .on("mouseover", function (d) {

2668 d3.select(this)

478



APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

2669 .attr("stroke", "black")

2670 .attr("stroke-width", "1px")

2671 .attr("opacity", 1)

2672 .attr("fill","#FF0000")

2673 })

2674 .on("mouseout", function (d) {

2675 d3.select(this)

2676 .attr("stroke", "black")

2677 .attr("stroke-width", "1px")

2678 .attr("opacity", function (d) {

2679 return d.opacity_value

2680 })

2681 .attr("fill", function (d) {

2682 if (d.function == function_name[0]) {

2683 return function_color[0]

2684 } else if (d.function == function_name[1]) {

2685 return function_color[1]

2686 } else if (d.function == function_name[2]) {

2687 return function_color[2]

2688 } else if (d.function == function_name[3]) {

2689 return function_color[3]

2690 } else if (d.function == function_name[4]) {

2691 return function_color[4]

2692 } else if (d.function == function_name[5]) {

2693 return function_color[5]

2694 } else if (d.function == function_name[6]) {

2695 return function_color[6]

2696 } else if (d.function == function_name[7]) {

2697 return function_color[7]

2698 } else if (d.function == function_name[8]) {

2699 return function_color[8]

479



2700 } else if (d.function == function_name[9]) {

2701 return function_color[9]

2702 }

2703 });

2704 })

2705 .on("mouseenter", function (d) {

2706 div_inner.transition()

2707 .duration(200)

2708 .style("opacity", 0.85);

2709 div_inner.html("<strong>Selected sentence</strong><br/><h5>

Index : "+d.index + "<h5/><h5>Function : " + d.function +

"<h5/><h5>Sentence : " + d.sentence+ "<h5/><h5>SentencePOS

: " + d.sentence_pos+ "<h5/>")

2710 .style("left", "20px")

2711 .style("top", sectionHeight*0.07+"px");

2712 })

2713 .on("mouseleave", function () {

2714 div_inner.transition()

2715 .duration(500)

2716 .style("opacity", 0);

2717 });

2718

2719 circle.exit().remove();

2720 }

2721 })

2722 </script>

2723 </body>

2724 </html>

480


	Introduction
	Background of beginning this project
	Polysemy in Korean adverbial postpositions
	Distributional Semantic Models (DSMs)
	Visualization system
	Outline of the Dissertation

	NLP reaserch on adverbial postpositions in Korean:  -ey, -eyse, and -(u)lo
	Previous research on polysemy of -ey, -eyse, and -(u)lo
	-ey
	-eyse
	-(u)lo

	Previous NLP research on adverbial postpositions
	Use of case frames in dictionaries only
	Use of probabilistic information from existing corpora

	Issues of NLP research on polysemy resolution
	Summary of the Chapter

	PPMI-SVD and SGNS for polysemy resolution
	Distributional Semantic Models
	Count-based model
	Word-word co-occurrence matrix and context window size
	Positive Pointwise Mutual Information
	Singular Value Decomposition

	Prediction-based model
	The one-hot encoding
	Continuous Bag Of Words
	Skip-Gram and Negative Sampling

	Summary of the Chapter

	Methodological set-up: PPMI-SVD and SGNS
	Corpus
	Sejong corpus: General description
	Composition of a corpus with respect to the three adverbial postpositions
	Creation of a hand-coded corpus
	Training and test sets

	Model training
	Word-level embedding: PPMI-SVD and SGNS
	Similarity-based estimation
	Classification model adapted from similarity-based estimation

	Visualization: PostEmbedding
	t-SNE and the cosine similarity
	Tasks and design objectives
	System development
	Interface of visualization system

	Summary of the Chapter

	Results: word-level embeddings
	Hypotheses
	Model performance: Classification
	Overall accuracy by model: PPMI-SVD and SGNS
	PPMI-SVD (count-based)
	SGNS (prediction-based)

	Overall accuracy by postpositions: -ey, -eyse, and -(u)lo
	-ey
	-eyse
	-(u)lo

	Correlation between corpus size and classification accuracy
	-ey
	-eyse
	-(u)lo


	Visualization system: clusters and co-occurring words
	Changes of clusters by environments (model and window size)
	Changes of co-occurring words by the functions of each postposition
	-ey
	-eyse
	-(u)lo

	Interim summary of visualization results

	Discussion of the Chapter
	Summary of the Chapter

	BERT for polysemy resolution
	How BERT was born
	Characteristics of BERT
	WordPiece tokenization
	BERT

	Effectiveness of BERT
	Summary of the Chapter

	Methodological set-up: BERT
	Corpus
	Model training
	KoBERT: pre-trained BERT model for Korean
	BERT fine-tuning by using BertForSequenceClassification

	Visualization: PostBERT
	Tasks and design objectives
	System development
	Interface of visualization system

	Summary of the Chapter

	Results: sentence-level embedding
	Hypotheses
	Model performance: Classification
	Overall accuracy by the BERT model
	Overall accuracy by postpositions: -ey, -eyse, and -(u)lo
	-ey
	-eyse
	-(u)lo

	Correlation between corpus size and classification accuracy
	-ey
	-eyse
	-(u)lo


	Visualization system: clusters of sentence-level embeddings
	-ey
	-eyse
	-(u)lo
	Interim summary of visualization results

	Discussion of the Chapter
	Summary of the Chapter

	Discussion
	Interpretations of word-level embedding models: PPMI-SVD and SGNS
	The number of functions in each postposition
	The role of context window size
	The changes in the relationship between postposition and their co-occurring words
	Overall discussion of two word-level embedding models: PPMI-SVD and SGNS

	Interpretations of sentence-level embedding model: BERT
	The number of functions in each postposition
	The relationship between corpus size of each function and model performance
	The relationship between the model performance and epoch
	Overall discussion of sentence-level embedding model: BERT


	Conclusion
	Summary of major findings
	Limitations and future works
	Implications of findings

	References
	Algorithms of this dissertation
	Code for the word-level embedding models
	Code for the sentence-level embedding model
	Code for the first visualization system (i.e., PostEmbedding)
	Code for the second visualization system (i.e., PostBERT)

